研究生: |
吳承隆 |
---|---|
論文名稱: |
三維晶格波茲曼法結合親/疏水性邊界模擬液氣兩相流之流場 3D Lattice Boltzmann Simulations of Incompressible Liquid-Gas system on Partial Wetting Surface |
指導教授: | 林昭安 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 三維 、晶格波茲曼 、高密度比 、兩相流 、親水性 、疏水性 、液滴 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, a 3D lattice Boltzmann multiphase fluid model based on D3Q19 which is capable of dealing two phase flow with large density ratio and partial wetting surface with a given contact angle is investigated. Multiphase fluid behavior can be simulated using the Navier-Stokes
equation coupling with convective Cahn-Hilliard equation [35], where the latter equation is used to capture the interface of multiphase fluid in terms of chemical potential. By adopting the free-energy model and adding an additional term into the total free energy to describe surface energy, a droplet rests on a surface with given contact angle can be simulated.
The capability of the present model, which is to compute two phase flow with wettability controllable surface, is validated by simulating a droplet that rests on a surface with given contact angle. The contact angles calculated from the results agree with theory. The effect of gravitational force on droplet shape is also discussed in terms of Bond number.
The present model is applied to simulate liquid lens cases. The simulation result shows good compatibility with the experiment done by Hsieh et al. [70], where Bond number is about 1.3.
[1] A.A. Darhuber, J.P. Valentino, S.M. Troian, S. Wanger, Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays, J. Microelectromech. Syst. 12 (2003) 873-879.
[2] A. Dupuis, J.M. Yeomans, Lattice Boltzmann modelling of droplets on chemically heterogeneous surfaces, Future Gener. Comput. Syst. 20 (2004) 993-1001.
[3] A.J. Briant, A.J. Wagner, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: I. Liquid-gas systems, Phys. Rev. E 69 (2004) 031602.
[4] A.J. Briant, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion: II. Binary fluids, Phys. Rev. E 69 (2004) 031603.
[5] A.J. Briant, P. Papatzacos, J.M. Yeomans, Lattice Boltzmann simulations of contact line motion in a liquid-gas system, Phil. Trans. Roy. Soc. A 360 (2002) 485-495.
[6] A.K. Gunstensen, D.H. Rothman, S. Zaleski, G. Zanetti, Lattice Boltzmann model of immiscible fluids, Phys. Rev. A 43 (1991) 4320-4327.
[7] A. Lamura, S. Succi, A Lattice Boltzmann for disordered fluids, Int. J. Mod. Phys. 17 (2003) 145-148.
[8] A. Lamura, G. Gonnella, J.M. Yeomans, A lattice Boltzmann model of ternary fluid mixtures, Europhys. Lett. 45 (1999) 314-320.
[9] A. Manz, H. Becker, Microsystem Technology in Chemistry and Life Science, Springer Topics in Current Chemistry (Berlin: Springer) (1998) 194.
[10] B. Berge, Electrocapillarite et mouillage de films isolants par l'eau, C. R. Acad. Sci. II (1993) 317-157.
[11] B. Berge, J. Peseux, Variable focal lens controlled by an external voltage: an application of electrowetting, Eur. Phys. J. E 3 (2000) 159-163.
[12] B. Deng, B.C. Shi, G.C. Wang, A New Lattice Bhatnagar-Gross-Krook model for the convection-Diffusion Equation with a Source Term, Chin. Phys. Lett. 22 (2005) 267-270.
[13] B.S. Gallardo, V.K. Gupta, F.D. Eagerton, L.I. Jong, V.S. Craig, R.R. Shah, N.L. Abbott, Electrochemical principles for active control of liquids on submillimeter scales, Science 283 (1999) 57-60.
[14] C. Cheng, Curved boundary techniques in lattice Boltzmann method to simulate complex geometry flows, master thesis, National Tsing Hua University, Taiwan, (2007).
[15] C.F. Ho, C. Chang, K.H. Lin, C.A. Lin, Consistent Boundary Conditions for 2D and 3D Lattice Boltzmann Simulations, CMES-Comp. Model. Eng. Sci. 44 (2009) 137-155.
[16] D.A. Wolf-Gladrow, Lattice-gas cellular automata and lattice Boltzmann models - an introduction, Springer, Lecture Notes in Mathematics (2000) 159.
[17] D.H. Rothman, J.M. Keller. Immiscible cellular-automaton fluids, J. Stat. Phys. 52 (1988) 1119-1127.
[18] D. Iwahara, H. Shinto, M. Miyahara, K. Higashitani, Liquid Drops on Homogeneous and Chemically Heterogeneous Surfaces: A Two-Dimensional Lattice Boltzmann Study, Langmuir, 19 (2003) 9086 -9093.
[19] D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys. 155 (1999) 96-127.
[20] D. Jamet, O. Lebaigue, N. Coutris, J.M. Delhaye, The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change, J. Comput. Phys. 169 (2001) 624-651.
[21] D.O. Martinez, W.H. Matthaeus, S. Chen, and D.C. Montgomery, Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics, Phys. Fluids 6 (1994) 1285-1298.
[22] D. Oner, T.J. McCarthy, Ultrahydrophobic surfaces. Effects of topography length scales on wettability, Langmuir 16 (2000) 7777-7782.
[23] D.T. Wasan, A.D. Nikolov, H.Brenner, Fluid dynamics: Droplets speeding on surfaces, Science 291 (2001) 605-606.
[24] F.J. Higuera, J. Jemenez, Boltzmann approach to lattice gas simulations, Europhys. Lett. 9 (1989) 663-668.
[25] F.J. Higuera, S. Succi, R. Benzi, Lattice gas-dynamics with enhanced collisions, Europhys. Lett. 9 (1989) 345-349.
[26] H.W. Zheng, C. Shu, Y.T. Chew, A lattice Boltzmann model for multiphase flows with large density ratio, J. Comput. Phys. 218 (2006) 353-371.
[27] H.W. Zheng, C. Shu, Y.T. Chew, Lattice Boltzmann interface capturing method for incompressible flows, Phys. Rev. E 72 (2005) 056705.
[28] I. Tamas, Gombosi, Gas kinetic theory, Cambridge University Press, (1994).
[29] J. Bico, C. Marzolin, D. Quere, Pearl drops, Europhys. Lett. 47 (1999) 220-226.
[30] J. Chin, E.S. Boek, P.V. Coveney, Lattice Boltzmann simulation of the flow of binary immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model, Phil. Trans. R. Soc. Lond. A 360 (2002) 547-558.
[31] J.J. Huang, C. Shu, Y.T. Chew, H.W. Zheng, Numerical study of 2d multiphase flows over grooved surface by lattice Boltzmann method, Int. J. Mod. Phys. C 18 (2007) 492-500.
[32] J.J. Huang, C. Shu, Y.T. Chew, Numerical investigation of transporting droplets by spatiotemporally controlling substrate wettability, J. Colloid Interface Sci. 328 (2008) 124-133.
[33] J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity, Clarendon, Oxford, (1989).
[34] J.W. Cahn, Critical point wetting, J. Chem. Phys. 66 (1977) 3667-3672.
[35] J.W. Cahn, J.E Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy, J. Chem. Phys. 28 (1958) 258-267.
[36] J.W. Hong, S.R. Quake, Integrated nanoliter systems, Nat. Biotechnol. 21 (2003) 1179-1183.
[37] J. Zeng, T. Korsmeyer, Principles of droplet electrohydrodynamics for lab-on-a-chip, Lab Chip 4 (2004) 265-277.
[38] L. Latorre, J. Kim, J. Lee, P.P. Guzman, H.J. Lee, P. Nouet, C.J. Kim, Electrostatic actuation of microscale liquid-metal droplets, J. Microelectromech. Syst. 11 (2002) 302-308.
[39] M. Cheng, J.S. Hua, J. Lou, Simulation of bubble-bubble interaction using a lattice Boltzmann method, Comput. Fluids 39 (2010) 260-270.
[40] M.C. Sukop, D. Or, Invasion percolation of single component, multiphase fluids with lattice Boltzmann models, Physica B 338 (2003) 298-303.
[41] M.G. Lippman, Relations entre les phenom`enes electriques et capillaires, Ann. Chim. Phys. 5 (1875) 494-459.
[42] M. Grunze, Surface science: Driven liquids, Science 283 (1999) 41-42.
[43] M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulations of liquid-gas and binary-fluid systems, Phys. Rev. E 54 (1996) 5041-5052.
[44] M.R. Swift, W.R. Osborn, J.M. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett. 75 (1995) 830-833.
[45] M.W. Prins, W.J. Welters, J.W. Weekamp, Fluid control inmultichannel structures by electrocapillary pressure, Science 291 (2001) 277-280.
[46] N. Takada, M. Misawa, A. Tomiyama, S. Hosokawa, Simulation of bubble motion under gravity by lattice Boltzmann method, J. Nucl. Sci. Technol. 38 (2001) 330-341.
[47] P.L. Bhatnagar, E.P. Gross, M. Krook, A model for collision processes in gases .1. small amplitude processes in charged and neutral one-component systems, Phys. Rev. E. 94 (1954) 511-525.
[48] Q.M. Chang, J.I.D. Alexander, Analysis of single droplet dynamics on striped surface domains using a lattice Boltzmann method, Microfluid. Nanofluid. 2 (2006) 309-326.
[49] R.A. Hayes, B.J. Feenstra, Video-speed electronic paper based on electrowetting, Nature 425 (2003) 383-385.
[50] R.G.M. van der Sman, Multiphase flow, 2008
[51] R.R. Nourgaliev, T.N. Dinh, B.R. Sehgal, On lattice Boltzmann modeling of phase transition in an isothermal non-ideal fluid, Nucl. Eng. Des. 211 (2002) 153-171.
[52] R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, D. Joseph, The lattice Boltzmann equation method: theoretical interpretation, numerics and implications, Int. J. Multiph. Flow 29 (2003) 117-169.
[53] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech. 31 (1999) 567-603.
[54] S.C. Jakeway, A.J. de Mello, E.L. Russell, Miniaturized total analysis systems for biological analysis Fresenius, J. Anal. Chem. 366 (2000) 525-539.
[55] S. Daniel, M.K. Chaudhury, J. C. Chen, Fast drop movements resulting from the phase change on a gradient surface, Science 291 (2001) 633-636.
[56] S. Harris, An introduction to the theory of the Boltzmann equation, Holt, Rinehart and Winston, New York, (1971).
[57] S.K. Cho, H.J. Moon, C.J. Kim, Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits, J. Microelectromech. Syst. 12 (2003) 70-80.
[58] S. Kuiper, B.H.W. Hendriks, Variable-focus liquid lens for miniature cameras, Appl. Phys. Lett. 85 (2004) 1128-1130.
[59] S.L. Teng, Y. Chen, H. Ohashi, Lattice Boltzmann simulation of multiphase fluid flows through the total variation diminishing artificial compression scheme, Int. J. Heat Fluid Flow 21 (2000) 112-121.
[60] S. Osher, R.P. Fedkiw, Level set methods: An overview and some recent results, J. Comput. Phys. 169 (2001) 463-502.
[61] S. Shibuichi, T. Onda, N. Satoh, K. Tsujii, Super water-repellent surfaces resulting from fractal structure, J. Phys. Chem. 100 (1996) 19512-19517.
[62] S.Wolfram, Cellular automaton fluids .1. Basic theory, J. Stat. Phys. 45 (1986) 471-526.
[63] T. Inamuro, T. Ogata, S. Tajima, N. Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198 (2004) 628-644.
[64] T. Lee, C.L. Lin, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys. 206 (2005) 16-47.
[65] T.Y. Hou, J.S. Lowengrub, M.J.Shelley, Boundary integral methods for multicomponent fluids and multiphase materials, J. Comput.Phys. 169 (2001) 302-362.
[66] U. Frisch, B. Hasslacher, Y. Pomeau, Lattice-gas automata for the Navier-Stokes equation, Phys. Rev. Lett. 56 (1986) 1505-1508.
[67] U. Frisch, D. d'Humiµeres, B. Hasslacher, P. Lallemand, Y. Pomeau, J.P. Rivet, Lattice gas hydrodynamics in two and three dimensions, Complex Syst. 1 (1987) 649-707.
[68] V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.C. Desplat, P. Bladon, Inertial effects in three-dimensional spinodal decomposition of a symmetric binary fluid mixture: a lattice Boltzmann study, J. Fluid Mech. 440 (2001) 147-203.
[69] V. Srinivasan, V.K. Pamula, R.B. Fair, Droplet-based microfluidic lab-on-a-chip for glucose detection, Anal. Chim. Acta 507 (2004) 145-150.
[70] W.H. Hsieh, J.H. Chen, Lens-profile control by electrowetting fabrication technique, IEEE Photonics Technol. Lett. 17 (2005) 606-608.
[71] W. Shen, J. Kim, C. J. Kim, Controlling the adhesion force for electrostatic actuation of microscale mercury drop by physical surface modification, proceedings: IEEE micro electro mechanical systems workshop (2002) 52-55.
[72] X.B. Nie, Y.H. Qian, G.D. Doolen, S.Y. Chen, Lattice Boltzmann simulation of the two-dimensional Rayleigh-Taylor instability, Phys. Rev. E 58 (1998) 6861-6864.
[73] X.W. Shan, G.D. Doolen, Multicomponent Lattice-Boltzmann Model With Interparticle Interaction, J. Stat. Phys. 81 (1994) 379-393.
[74] X.W. Shan, H.D. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47 (1993) 1815-1819.
[75] X.W. Shan, H.D. Chen, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E, 49 (1994) 2941-2948.
[76] X.Y. He, L.S. Luo, Lattice Boltzmann model for the incompressible Navier-Stokes equation, J. Stat. Phys. 88 (1997) 927-944.
[77] X.Y. He, L.S. Luo, Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E 56 (1997) 6811-6817.
[78] X.Y. He, S.Y. Chen, R.Y. Zhang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys. 152 (1999) 642-663.
[79] X.Y. He, X.W. Shan, G.D. Doolen, Discrete Boltzmann equation model for nonideal gases, Phys. Rev. E 57 (1998) R13-R16.
[80] Y.Y. Yan, Y.Q. Zu, lattice Boltzmann method for incompressible two-phase flows on partial wetting surface with large density ratio, J. Comput. Phys. 227 (2007) 763-775.
[81] Z.L. Guo, C.G. Zheng, B.C. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65 (2002) 046308.
[82] Z.L. Yang, B. Palm, B.R. Sehgal, Numerical simulation of bubbly two-phase flow in a narrow channel, Int. J. Heat Mass Transf. 45 (2002) 631-639.
[83] Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto, Effects of surface structure on the hydrophobicity and sliding behavior of water droplets, Langmuir 18 (2002) 5818-5822.