研究生: |
林崇宇 Chong-yu Lin |
---|---|
論文名稱: |
窖蛋白一參與蛋白酶激活接受器一訊息傳遞之研究 Involvement of Caveolin-1 in the Signal Pathway of Protease-Activated Receptor 1 |
指導教授: |
傅化文
Hua-wen Fu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 37 |
中文關鍵詞: | 窖蛋白一 、蛋白酶激活接受器一 、G 蛋白 、細胞外信號調節激酶 、腺苷酸酸環化酶 、凝血蛋白酶 |
外文關鍵詞: | Caveolin-1, Protease-Activated Receptor 1, G protein, extracellular signal-regulated kinase, adenylyl cyclase, thrombin |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
蛋白酶激活接受器一(protease-activated receptor 1)是一種G蛋白連結接受器 (G protein-coupled receptor),能被凝血蛋白酶(thrombin)所激活。窖蛋白一(caveolin-1)已知參與多個G蛋白連結接受器之訊息調控。然而,目前並不知道窖蛋白一是否會參與調控蛋白酶激活接受器一的訊息傳遞。為了要研究窖蛋白一是否參與調控蛋白酶激活接受器一的訊息傳遞,利用小分子核酸干擾(small interfering RNA)阻礙窖蛋白一的表現,進而測試活化蛋白酶激活接受器一所導致之腺苷酸酸環化酶(adenylyl cyclase)及細胞外信號調節激酶(extracellular signal-regulated kinase)之活性變化。因為窖蛋白一的表現受到高度調控,首先使用蛋白質抑制劑放線菌酮(cycloheximide)進行窖蛋白一的半衰期測試。測試發現窖蛋白一的半衰期約四十八小時,而在七十二小時幾乎都降解完。另外已知細胞生長的密度也會影響窖蛋白一的表現,在小分子核酸干擾阻礙窖蛋白一的表現後,測試在不同的細胞密度下,窖蛋白一的表現是否有影響。發現細胞密度在百分之七十五以下,是小分子核酸干擾阻礙窖蛋白一表現之適合條件。當利用小分子核酸干擾方式阻礙窖蛋白一的表現,在蛋白酶激活接受器一活化下,發現腺苷酸酸環化酶的活化與窖蛋白一無關,而在沒有窖蛋白一下,細胞外信號調節激酶活性的持續會減弱。總結,在人類胚胎腎臟細胞(human embryonic kidney 293)內蛋白酶激活接受器一的訊息途徑中,窖蛋白一能延續細胞外信號調節激酶活性,但與腺苷酸酸環化酶的活化無關。
Protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR), is activated by thrombin. Recently, caveolin-1 has been found to be involved in the regulation of cell signaling of several GPCRs. However, it is still unknown whether caveolin-1 plays any role in PAR1 signaling. To determine whether caveolin-1 is involved in PAR1 signaling, I have examined the effect of caveolin-1 knockdown on adenylyl cyclase activity and extracellular signal-regulated kinase (ERK) activation induced by PAR1. Because the expression of caveolin-1 is highly regulated, the half-life of caveolin-1 was examined by the addition of cycloheximide to inhibit proteins synthesis. I found that the half-life of caveolin-1 is about 48 hours and caveolin-1 could be almost degraded in 72 hours. Since the cell confluency has been reported to influence the expression of caveolin-1, the expression of caveolin-1 at different cell confluency was also determined after applying small interfering RNA (siRNA) to knock down caveolin-1. It was found that the cell conflunecy should be below 75% as the optimal condition for caveolin-1 knockdown. By applying siRNA-mediated knockdown of caveolin-1, I found that after PAR1 activation, caveolin-1 is not involved in Gi-dependent inhibition of adenylyl cyclase and that loss of caveolin-1 attenuates the duration of ERK activation induced by PAR1. The results indicate that caveolin-1 extends the duration of ERK activation but not regulates Gi-dependent inhibition of adenylyl cyclase induced by PAR1 in HEK 293 cells.
References
1. Davey MG, Luscher EF: Actions of thrombin and other coagulant and proteolytic enzymes on blood platelets. Nature 1967, 216:857-858.
2. Mann KG, Nesheim ME, Church WR, Haley P, Krishnaswamy S: Surface-dependent reactions of the vitamin K-dependent enzyme complexes. Blood 1990, 76:1-16.
3. Davie EW, Fujikawa K, Kisiel W: The coagulation cascade: initiation, maintenance, and regulation. Biochemistry 1991, 30:10363-10370.
4. Cocks TM, Moffatt JD: Protease-activated receptors: sentries for inflammation? Trends Pharmacol Sci 2000, 21:103-108.
5. Vergnolle N, Wallace JL, Bunnett NW, Hollenberg MD: Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol Sci 2001, 22:146-152.
6. Coughlin SR, Camerer E: PARticipation in inflammation. J Clin Invest 2003, 111:25-27.
7. Chen LB, Buchanan JM: Mitogenic activity of blood components. I. Thrombin and prothrombin. PNAS 1975, 72:131-135.
8. McNamara CA, Sarembock IJ, Gimple LW, Fenton JW, 2nd, Coughlin SR, Owens GK: Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest 1993, 91:94-98.
9. Griffin CT, Srinivasan Y, Zheng YW, Huang W, Coughlin SR: A role for thrombin receptor signaling in endothelial cells during embryonic development. Science 2001, 293:1666-1670.
10. Coughlin SR: Thrombin receptor function and cardiovascular disease. Trends in Cardiovascular Medicine 1994, 4:77-83.
11. D'Andrea MR, Derian CK, Santulli RJ, Andrade-Gordon P: Differential expression of protease-activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues. Am J Pathol 2001, 158:2031-2041.
12. Even-Ram S, Uziely B, Cohen P, Grisaru-Granovsky S, Maoz M, Ginzburg Y, Reich R, Vlodavsky I, Bar-Shavit R: Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 1998, 4:909-914.
13. Hu L, Lee M, Campbell W, Perez-Soler R, Karpatkin S: Role of endogenous thrombin in tumor implantation, seeding, and spontaneous metastasis. Blood 2004, 104:2746-2751.
14. Anderson RG: The caveolae membrane system. Annu Rev Biochem 1998, 67:199-225.
15. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000, 1:31-39.
16. Galbiati F, Razani B, Lisanti MP: Emerging themes in lipid rafts and caveolae. Cell 2001, 106:403-411.
17. Rasmussen UB, Vouret-Craviari V, Jallat S, Schlesinger Y, Pages G, Pavirani A, Lecocq JP, Pouyssegur J, Van Obberghen-Schilling E: cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Lett 1991, 288:123-128.
18. Vu TK, Hung DT, Wheaton VI, Coughlin SR: Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991, 64:1057-1068.
19. Ishihara H, Connolly AJ, Zeng D, Kahn ML, Zheng YW, Timmons C, Tram T, Coughlin SR: Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 1997, 386:502-506.
20. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, Farese RV, Jr., Tam C, Coughlin SR: A dual thrombin receptor system for platelet activation. Nature 1998, 394:690-694.
21. Xu WF, Andersen H, Whitmore TE, Presnell SR, Yee DP, Ching A, Gilbert T, Davie EW, Foster DC: Cloning and characterization of human protease-activated receptor 4. Proc Natl Acad Sci U S A 1998, 95:6642-6646.
22. Coughlin SR: Thrombin receptor structure and function. Thromb Haemost 1993, 70:184-187.
23. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR: Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 1999, 103:879-887.
24. Brass LF, Vassallo RR, Jr., Belmonte E, Ahuja M, Cichowski K, Hoxie JA: Structure and function of the human platelet thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus. J Biol Chem 1992, 267:13795-13798.
25. Hung DT, Vu TK, Wheaton VI, Ishii K, Coughlin SR: Cloned platelet thrombin receptor is necessary for thrombin-induced platelet activation. J Clin Invest 1992, 89:1350-1353.
26. Ishihara H, Zeng D, Connolly AJ, Tam C, Coughlin SR: Antibodies to Protease-activated receptor 3 inhibit activation of mouse platelets by thrombin. Blood 1998, 91:4152-4157.
27. Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR: PAR3 is a cofactor for PAR4 activation by thrombin. Nature 2000, 404:609-613.
28. Hung DT, Wong YH, Vu TK, Coughlin SR: The cloned platelet thrombin receptor couples to at least two distinct effectors to stimulate phosphoinositide hydrolysis and inhibit adenylyl cyclase. J Biol Chem 1992, 267:20831-20834.
29. Faruqi TR, Weiss EJ, Shapiro MJ, Huang W, Coughlin SR: Structure-function analysis of protease-activated receptor 4 tethered ligand peptides. Determinants of specificity and utility in assays of receptor function. J Biol Chem 2000, 275:19728-19734.
30. Swift S, Sheridan PJ, Covic L, Kuliopulos A: PAR1 thrombin receptor-G protein interactions. Separation of binding and coupling determinants in the galpha subunit. J Biol Chem 2000, 275:2627-2635.
31. Verrall S, Ishii M, Chen M, Wang L, Tram T, Coughlin SR: The thrombin receptor second cytoplasmic loop confers coupling to Gq-like G proteins in chimeric receptors. Additional evidence for a common transmembrane signaling and G protein coupling mechanism in G protein-coupled receptors. J Biol Chem 1997, 272:6898-6902.
32. Offermanns S, Laugwitz KL, Spicher K, Schultz G: G proteins of the G12 family are activated via thromboxane A2 and thrombin receptors in human platelets. Proc Natl Acad Sci U S A 1994, 91:504-508.
33. Wang H, Ubl JJ, Stricker R, Reiser G: Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am J Physiol Cell Physiol 2002, 283:C1351-1364.
34. Buresi MC, Buret AG, Hollenberg MD, Macnaughton WK: Activation of proteinase-activated receptor 1 stimulates epithelial chloride secretion through a unique MAP kinase- and cyclo-oxygenase-dependent pathway. FASEB J 2002, 16:1515-1525.
35. Sabri A, Short J, Guo J, Steinberg SF: Protease-activated receptor-1-mediated DNA synthesis in cardiac fibroblast is via epidermal growth factor receptor transactivation: distinct PAR-1 signaling pathways in cardiac fibroblasts and cardiomyocytes. Circ Res 2002, 91:532-539.
36. Keogh RJ, Houliston RA, Wheeler-Jones CPD: Thrombin-stimulated Pyk2 phosphorylation in human endothelium is dependent on intracellular calcium and independent of protein kinase C and Src kinases. Biochemical and Biophysical Research Communications 2002, 294:1001-1008.
37. Kahan C, Seuwen K, Meloche S, Pouyssegur J: Coordinate, biphasic activation of p44 mitogen-activated protein kinase and S6 kinase by growth factors in hamster fibroblasts. Evidence for thrombin-induced signals different from phosphoinositide turnover and adenylylcyclase inhibition. J Biol Chem 1992, 267:13369-13375.
38. van Corven EJ, Hordijk PL, Medema RH, Bos JL, Moolenaar WH: Pertussis toxin-sensitive activation of p21ras by G protein-coupled receptor agonists in fibroblasts. Proc Natl Acad Sci U S A 1993, 90:1257-1261.
39. Chen Y, Grall D, Salcini AE, Pelicci PG, Pouyssegur J, Van Obberghen-Schilling E: Shc adaptor proteins are key transducers of mitogenic signaling mediated by the G protein-coupled thrombin receptor. Embo J 1996, 15:1037-1044.
40. Mitsui H, Maruyama T, Kimura S, Takuwa Y: Thrombin activates two stress-activated protein kinases, c-Jun N-terminal kinase and p38, in HepG2 cells. Hepatology 1998, 27:1362-1367.
41. Malcolm KC, Chambard JC, Grall D, Pouyssegur J, van Obberghen-Schilling E: Independent activation of endogenous p21-activated protein kinase-3 (PAK3) and JNK by thrombin in CCL39 fibroblasts. J Cell Physiol 2000, 185:235-243.
42. Rodriguez-Linares B, Watson SP: Phosphorylation of JAK2 in thrombin-stimulated human platelets. FEBS Lett 1994, 352:335-338.
43. Huang YQ, Li JJ, Karpatkin S: Thrombin inhibits tumor cell growth in association with up-regulation of p21(waf/cip1) and caspases via a p53-independent, STAT-1-dependent pathway. J Biol Chem 2000, 275:6462-6468.
44. Okamoto T, Schlegel A, Scherer PE, Lisanti MP: Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem 1998, 273:5419-5422.
45. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG: Caveolin, a protein component of caveolae membrane coats. Cell 1992, 68:673-682.
46. Chang WJ, Ying YS, Rothberg KG, Hooper NM, Turner AJ, Gambliel HA, De Gunzburg J, Mumby SM, Gilman AG, Anderson RG: Purification and characterization of smooth muscle cell caveolae. J Cell Biol 1994, 126:127-138.
47. Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP: Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 1999, 19:7289-7304.
48. Fernandez I, Ying Y, Albanesi J, Anderson RG: Mechanism of caveolin filament assembly. Proc Natl Acad Sci U S A 2002, 99:11193-11198.
49. Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van Donselaar E, Peters P, Lisanti MP: Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 1997, 272:29337-29346.
50. Parolini I, Sargiacomo M, Galbiati F, Rizzo G, Grignani F, Engelman JA, Okamoto T, Ikezu T, Scherer PE, Mora R, et al.: Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the Golgi complex. J Biol Chem 1999, 274:25718-25725.
51. Way M, Parton RG: M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett 1995, 376:108-112.
52. Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP: Molecular Cloning of Caveolin-3, a Novel Member of the Caveolin Gene Family Expressed Predominantly in Muscle. J Biol Chem 1996, 271:2255-2261.
53. Razani B, Woodman SE, Lisanti MP: Caveolae: from cell biology to animal physiology. Pharmacol Rev 2002, 54:431-467.
54. Oh P, Schnitzer JE: Segregation of heterotrimeric G proteins in cell surface microdomains. Gq binds caveolin to concentrate in caveolae, whereas Gi and Gs target lipid rafts by default. Mol Biol Cell 2001, 12:685-698.
55. Haasemann M, Cartaud J, Muller-Esterl W, Dunia I: Agonist-induced redistribution of bradykinin B2 receptor in caveolae. J Cell Sci 1998, 111 ( Pt 7):917-928.
56. Schwencke C, Okumura S, Yamamoto M, Geng YJ, Ishikawa Y: Colocalization of beta-adrenergic receptors and caveolin within the plasma membrane. J Cell Biochem 1999, 75:64-72.
57. Rybin VO, Xu X, Lisanti MP, Steinberg SF: Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem 2000, 275:41447-41457.
58. Ju H, Venema VJ, Liang H, Harris MB, Zou R, Venema RC: Bradykinin activates the Janus-activated kinase/signal transducers and activators of transcription (JAK/STAT) pathway in vascular endothelial cells: localization of JAK/STAT signalling proteins in plasmalemmal caveolae. Biochem J 2000, 351:257-264.
59. Ostrom RS, Violin JD, Coleman S, Insel PA: Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes. Mol Pharmacol 2000, 57:1075-1079.
60. Bhatnagar A, Sheffler DJ, Kroeze WK, Compton-Toth B, Roth BL: Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected G{alpha}q-coupled protein receptors. J Biol Chem 2004, 279:34614-34623.
61. Engelman JA, Chu C, Lin A, Jo H, Ikezu T, Okamoto T, Kohtz DS, Lisanti MP: Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett 1998, 428:205-211.
62. Galbiati F, Volonte D, Engelman JA, Watanabe G, Burk R, Pestell RG, Lisanti MP: Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. Embo J 1998, 17:6633-6648.
63. Bauer PM, Yu J, Chen Y, Hickey R, Bernatchez PN, Looft-Wilson R, Huang Y, Giordano F, Stan RV, Sessa WC: Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci U S A 2005, 102:204-209.
64. Hua H, Munk S, Whiteside CI: Endothelin-1 activates mesangial cell ERK1/2 via EGF-receptor transactivation and caveolin-1 interaction. Am J Physiol Renal Physiol 2003, 284:F303-312.
65. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391:806-811.
66. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411:494-498.
67. Volonte D, Galbiati F, Lisanti MP: Visualization of caveolin-1, a caveolar marker protein, in living cells using green fluorescent protein (GFP) chimeras. The subcellular distribution of caveolin-1 is modulated by cell-cell contact. FEBS Lett 1999, 445:431-439.
68. Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH, Nishimoto I, Lisanti MP: Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 1995, 270:15693-15701.
69. Sharma SK, Klee WA, Nirenberg M: Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci U S A 1975, 72:3092-3096.
70. Watts VJ, Neve KA: Sensitization of adenylate cyclase by Galpha i/o-coupled receptors. Pharmacol Ther 2005, 106:405-421.
71. Gonzalez E, Nagiel A, Lin AJ, Golan DE, Michel T: Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. J Biol Chem 2004, 279:40659-40669.
72. Huang C, Hepler JR, Chen LT, Gilman AG, Anderson RGW, Mumby SM: Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol Biol Cell 1997, 8:2365-2378.
73. Toya Y, Schwencke C, Couet J, Lisanti MP, Ishikawa Y: Inhibition of adenylyl cyclase by caveolin peptides. Endocrinology 1998, 139:2025-2031.
74. Sevetson BR, Kong X, Lawrence JC, Jr.: Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc Natl Acad Sci U S A 1993, 90:10305-10309.
75. Mischak H, Seitz T, Janosch P, Eulitz M, Steen H, Schellerer M, Philipp A, Kolch W: Negative regulation of Raf-1 by phosphorylation of serine 621. Mol Cell Biol 1996, 16:5409-5418.
76. Sharma SK, Klee WA, Nirenberg M: Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci U S A 1975, 72:3092-3096.