簡易檢索 / 詳目顯示

研究生: 邱萬誠
Chiu, Wan-Cheng
論文名稱: 結合振動式與熱傳式傳感器之大範圍CMOS-MEMS壓力計
A Wide-Range CMOS-MEMS Pressure Sensor with Combined Resonant and Thermal Transducers
指導教授: 李昇憲
Li, Sheng-Shian
口試委員: 鄭裕庭
方維倫
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2015
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: CMOS-MEMS雙鉗樑音叉形共振器Pirani壓力計Ring-down
外文關鍵詞: CMOS-MEMS, DETF Resonator, Pirani, Pressure Sensor, Ring-down
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中我們透過現有之TSMC 0.35μm CMOS製程實現了單一元件上具備雙鉗樑音叉型共振傳感器以及Pirani壓力計,並且於不同之壓力下量測得到共振器之壓力感測區間為3 Torr至200 Torr而Pirani壓力計之感測區間為0.06 Torr至4 Torr,因此達到了總感測區間為0.06 Torr至200 Torr之壓力範圍,並且透過數據處理可以使感測區間加大至0.02~400 Torr。本研究之最大特色在於藉由元件設計方式實現在單一元件上透過兩種不同的感測機制量測壓力,因此可以大幅縮小元件之使用面積。
    一般的共振式壓力感測器由於操作成振盪器模式,因此雖然具有高敏感度的優點,但是容易受到雜散電容的影響,而且有較高的功率消耗,並且從其輸出訊號只能得到共振頻的資訊而無法提供Q值。而相較之下,Ring-down的量測方式可以同時得知Q值以及共振頻,並且較不易受到雜散電容之影響。由於Ring-down操作手法的特性使得相較於振盪器有著極低的功率消耗,然而此種方式之敏感度則較前者為低。
    當給予共振器一輸入方波時,透過製作出之雙鉗樑音叉型共振器,本研究成功地量測到共振器因Ring-down而產生的運動電流,並且透過Ring-down方式量測,成功地萃取出於不同壓力下時之Q值,以進行壓力感測。


    This work reports the realization of double ended tuning fork (DETF) resonant transducer and Pirani gauge on a single device through the use of TSMC 0.35μm CMOS process technology. Through the measurement of DETF resonator under different pressure, a dynamic range of 3Torr to 200Torr was obtained; a dynamic range of 0.06Torr to 4Torr for the Pirani gauge; and a total combined dynamic range of 0.06Torr to 200Torr. By the technique of data post-processing, this work was able to enhance the dynamic range to 0.02Torr to 400Torr. The most prominent feature of this work is the realization of two different pressure sensing mechanisms on a single device thus achieving a smaller device area while maintaining a large dynamic range.
    Usually resonant type pressure sensors are operated as an oscillator. Although it has a high sensitivity, this type of sensor is susceptible to the effect of parasitic capacitance and it has higher power consumption; also through the output signal only the frequency can be obtained. In contrast, by using the Ring-down measurement strategy both the Q factor and resonant frequency can be acquired with the additional benefit of avoiding parasitic capacitance effect. Due to the nature of Ring-down, it has a relatively lower power consumption compared to oscillator; however, it has a lower sensitivity.
    By applying a square wave voltage signal to the designed DETF resonator, the motional current from the resonator due to the Ring-down motion was successfully measured. The Q factor at various pressures was also successfully extracted from the Ring-down waveform.

    圖目錄……………………………………………………...…vii 表目錄.........……………………………………………………x 第一章 前言 1 1-1 研究動機 1 1-2 文獻回顧 5 1-3 TSMC 0.35 μm 2P4M製程平台 8 1-4 文章架構 10 第二章 理論分析及元件模擬 12 2-1 理論模型的建立 12 2-1-1 機械系統 13 2-1-2 等效電路 14 2-1-3 雙鉗樑 (Clamped-Clamped Beam) 共振器 16 2-1-4 Ring-down現象理論分析 17 2-1-4-1 Ring-down等效機械系統分析 17 2-1-4-2 Ring-down等效電路模型分析 19 2-2 Squeeze-film Damping分析 20 2-2-1 能量轉換模型 21 2-3 共振器頻率對壓力分析 27 2-4 Pirani壓力計理論分析 30 2-4-1 變壓下之空氣熱傳導探討 31 2-4-2 Pirani壓力計理論公式 33 2-4-3 Pirani壓力計模擬與分析 35 第三章CMOS-MEMS後製程與共振器及Pirani壓力計量測結果 39 3-1 標準CMOS 0.35 μm製程 39 3-2 CMOS-MEMS後製程 40 3-3 雙鉗樑音叉型共振器量測結果 44 3-4 雙鉗樑音叉型共振器內部Pirani壓力計量測結果 51 3-5 共振式與熱傳式傳感器壓力感測範圍 56 第四章 Ring-down量測結果以及數據處理 59 4-1 雙鉗樑音叉型共振器Ring-down量測架設 59 4-2 Ring-down波形Q值與共振頻萃取 68 4-3 Ring-down於不同壓力下之量測結果 69 第五章 結論與未來研究 72 5-1 結論 72 5-2 未來研究方向 73 第六章 參考文獻 76 圖目錄 Figure 1.1: Yole公司MEMS市場資料。 5 Figure 1.2: Pettine等人所設計出之振盪式環境感測器。 8 Figure 1.3: Pertijs等人所設計出之Ring-down式感測器。 8 Figure 1.4: TSMC 0.35 μm CMOS 2P4M標準製程剖面圖。 10 Figure 1.5: CMOS-MEMS中共振器與Pirani壓力計走線 10 Figure 2.1: 雙鉗樑音叉型共振元件及其二階系統等效模型。 13 Figure 2.2: 等效機械系統受矩形力之響應。 18 Figure 2.3: RLC電路迴圈之Ring-down響應。 20 Figure 2.4: 平板振動示意圖。 26 Figure 2.5: 計算於平板下方的平均移動距離示意圖。 26 Figure 2.6: 不同頻率共振器對壓力之Q值變化。 26 Figure 2.7: 不同空氣間隙對壓力之Q值變化。 27 Figure 2.8: 不同壓力下之薄膜擠壓彈性係數。 29 Figure 2.9: 不同壓力下之共振器動態響應。 30 Figure 2.10: 不同壓力下之共振頻變化。 30 Figure 2.11: 不同壓力下之空氣熱通量變化。 36 Figure 2.12: Pirani壓力計結構示意圖。 36 Figure 2.13: Pirani壓力計長度變化模擬結果。 37 Figure 2.14: Pirani壓力計寬度變化模擬結果。 37 Figure 2.15: Pirani壓力計與基板間距變化模擬結果。 38 Figure 3.1: TSMC 0.35 μm CMOS 2P4M標準製程剖面圖。 40 Figure 3.2: CMOS-MEMS後製程流程圖。 42 Figure 3.3: CMOS-MEMS共振器及Pirani壓力計與轉阻放大器電路光學顯微鏡圖。 43 Figure 3.4: 雙鉗樑音叉型共振器及Pirani壓力計之SEM圖。 43 Figure 3.5: 單根雙鉗樑局部放大之SEM圖。 44 Figure 3.6: 雙鉗樑音叉型共振器Two-port量測電路示意圖。 48 Figure 3.7: 雙鉗樑音叉型共振器two-port量測實驗架設圖。 48 Figure 3.8: 於真空中單純量測共振器之頻率響應。 49 Figure 3.9: 共振器與轉阻放大器於真空中之頻率響應量測結果。 49 Figure 3.10: 共振器與轉阻放大器於真空中和大氣中之量測結果。 50 Figure 3.11: 共振器在不同壓力下Q值變化。 50 Figure 3.12: 共振器在不同壓力下之頻率變化。 51 Figure 3.13: Pirani壓力計量測架設圖 55 Figure 3.14: Pirani壓力計在不同壓力下之阻值變化及模擬圖。 55 Figure 3.15: Pirani壓力計之溫度與功率變化關係圖。 56 Figure 3.16: Pirani壓力計之熱阻抗對壓力關係圖。 56 Figure 3.17: 共振器與Pirani壓力計之壓力感測區間。 58 Figure 3.18: 經由數據處理後之壓力感測區間。 58 Figure 4.1: 雙鉗樑音叉型共振器Ring-down量測電路示意圖。 62 Figure 4.2: 雙鉗樑音叉型共振器Ring-down實驗架設圖。 63 Figure 4.3: 雙鉗樑共振器真空中Ring-down單次結果。 63 Figure 4.4: LTspice模擬不同方波頻率之Ring-down響應。 64 Figure 4.5: 不同方波頻率之Ring-down實驗結果。 65 Figure 4.6: LTspice模擬不同方波振幅之Ring-down響應。 66 Figure 4.7: 不同方波振幅之Ring-down量測結果。 66 Figure 4.8: Ring-down量測訊號做FFT轉換。 67 Figure 4.9: 真空中與大氣中Ring-down量測訊號。 67 Figure 4.10: 不同壓力下之Ring-down響應。 70 Figure 4.11: 不同壓力下Ring-down波形萃取之Q值。 70 Figure 4.12: Ring-down與網路分析儀萃取Q值比較圖。 71 Figure 5.1: 經由數據處理後之壓力計感測範圍 75 Figure 5.2: 未來共振式壓力感測讀取電路示意圖。 75   表目錄 Table 5.1: 本研究與其他文獻之比較表。 73

    [1] J.-S. Park and Y. B. Gianchandani, “A servo-controlled capacitive pressure sensor using a capped-cylinder structure microfabricated by a three-mask process,” IEEE/ASME Journal of Microelectromechanical Systems, vol. 12, no. 2, pp.209-220, 2003.
    [2] A. DeHennis and K. D. Wise, “An all-capacitive sensing chip for absolute pressure, temperature, and relative humidity,” Technical Digest, the 12th International Conference on Solid-State Sensors & Actuators (Transducers’03) , Boston, MA, June 2003, pp.1860-1863.
    [3] T. J. Harpster, B. Stark, and K. Najafi, “A passive wireless integrated humidity sensor,” Sensors and Actuators A: Physical, vol. 95, no. 2-3, pp.100-107, 2002.
    [4] J. A. Potkay, J. A. Driscoll, M. Agah, R. D. Sacks and K. D. Wise, “A high-performance microfabricated gas chromatography column,” Proceedings, 16th International IEEE Micro Electro Mechanical Systems Conference (MEMS’03), Kyoto, Japan, January 2003, pp.395-398.
    [5] W.-C. Tian, S. W. Pang, C. J. Lu and E. T. Zellers, “Microfabricated preconcentrator/focuser for a micro-scale gas chromatograph,” IEEE/ASME Journal of Microelectromechanical Systems, vol. 12, pp.264-272, 2003.
    [6] Y.-W. Lin, S. Lee, S.-S. Li, and C. T.-C. Nguyen, “60-MHz wine glass micromechanical disk reference oscillator,” Technical Digest, 2004 IEEE International Solid-State Circuits Conference, San Francisco, California, Feb. 15-19, 2004, pp.322-323.
    [7] Y.-W. Lin, et al., “Series-resonant VHF micromechanical resonator reference oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp.2477-2491, 2004.
    [8] Y.-W. Lin, S.-S. Li, Z. Ren, and Clark T.-C. Nguyen, “Low phase noise array-composite micromechanical wine-glass disk oscillator,” Technical Digest, 2005 IEEE International Electron Devices Meeting, Washington, DC, Dec. 5-7, 2005, pp. 287-290.
    [9] S.-S. Li, et al., “Bridged micromechanical filters,” Proceedings, IEEE International Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conference, Montreal, Canada, Aug. 24-27, 2004, pp.144-150.
    [10] S.-S. Li, Y.-W. Lin, Z. Ren, and C. T.-C. Nguyen, “Self-switching vibrating micromechanical filter bank,” Proceedings, IEEE Joint International Frequency Control Symposium, Vancouver, Canada, Aug. 2005, pp.135-141.
    [11] S.-S. Li, Y.-W. Lin, Z. Ren, and C. T.-C. Nguyen, “Disk-array design for suppression of unwanted modes in micromechanical composite-array filters,” Technical Digest, 19th International IEEE Micro Electro Mechanical Systems Conference (MEMS’06), Istanbul, Turkey, Jan. 22-26, 2006, pp.866-869.
    [12] S.-S. Li, et al., “An MSI micromechanical differential disk-array filter,” Technical Digest, the 14th International Conference on Solid-State Sensors & Actuators (Transducers’07), Lyon, France, June 10-14, 2007, pp.307-311.
    [13] S.-S. Li, et al., “A micromechanical parallel-class disk-array filter,” Proceedings, 2007 IEEE International Frequency Control Symposium, Geneva, Switzerland, May 29-June 1, 2007, pp.1356-1361.
    [14] S.-S. Li, Y.-W. Lin, Y. Xie, Z. Ren, and Clark T.-C. Nguyen, “Small % bandwidth design of a 431-MHz notched-coupled micromechanical hollow-disk ring mixer-filter,” Proceedings, IEEE International Ultrasonics Symposium, Rotterdam, the Netherlands, Sept. 18-21, 2005, pp.1295-1298.
    [15] Yole Development, http://www.yole.fr/
    [16] G. Lammel, J. Gutmann, L. Marti, and M. Dobler, “Indoor navigation with mems sensors,” Procedia Chemistry, 2009, 1, pp.532-535.
    [17] C. Ravariu, F. Ravariu, D. Dobrescu, L. Dobrescu, C. Codreanu, and M. Avram, “A designing rule for a pressure sensor with PZT layer,” Semiconductor Conference, Sinaia, Romania, Oct., 2001, pp. 379-382.
    [18] C. S. Smith, “Piezoresistance effect in germanium and silicon,” Phys. Rev., 1954, 94, pp. 42-49.
    [19] A. Gieles, “Subminiature silicon pressure transducers,” Solid-State Circuits Conference, Philadelphia, PA, USA, Feb., 1969, pp. 108-109.
    [20] A. V. Chavan, and K. D. Wise, “A monolithic fully-integrated vacuum-sealed CMOS pressure sensor,” IEEE Trans. on Electron Devices, vol. 49, pp. 164-169, 2002.
    [21] J. Pettine, V. Petrescu, D. M. Karabacak, M. Vandecasteele, M. Crego-Calama, and C. V. Hoof, “Power-efficient oscillator-based readout circuit for multichannel resonant volatile sensors,” IEEE Trans. on Biomedical Circuits and Systems, vol. 6, no. 6, pp. 542-551, Dec., 2012.
    [22] Y. Yan, Z. Zeng, C. Chen, H. Jiang, Z.-Y. Chang, D. M. Karabacak, and M. A.P. Pertijs, “An energy-efficient reconfigurable readout circuit for resonant sensors based on ring-down measurement,” Proceedings, IEEE Sensors Conference, Valencia, Nov., 2014, pp. 221-224.
    [23] H. Jiang, Z.-Y. Chang, and M. Pertijs, “A 30ppm <80nJ ring-down-based readout circuit for resonant sensors,” Proceedings, IEEE International Solid-States Circuits Conference, San-Francisco, CA, USA, Feb., 2015, pp. 482-483.
    [24] F. D. Bannon, J. R. Clark, and C. T.-C. Nguyen, “High-Q HF microelectromechanical filters,” IEEE Journal of Solid-State Circuits, vol. 35, no. 4, pp. 512-526, April 2000.
    [25] M. Bao, H. Yang, H. Yin, and Y. Sun, “Energy transfer model for squeeze-film air damping in low vacuum,” J. Micromech. Microeng., vol. 12, pp. 341-346, 2002.
    [26] M. A. Perez and A. M. Shkel, “The effect of squeeze film constriction on bandwidth improvement in interferometric accelerometers,” J. Micromech. Microeng., vol. 18, no. 5, p. 055031, May 2008.
    [27] M. Andrews, I. Harris, and G. Turner, “A comparison of squeezefilm theory with measurements on a microstructure,” Sens. Actuators A: Physical, vol. 36, no. 1, pp. 79-87, Mar. 1993.
    [28] J. J. Blech, “On isothermal squeeze films,” J. Tribol., vol. 105, no. 4, pp. 615-620, 1983.
    [29] C. H. Mastrangelo and R. S. Muller, “Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor,” IEEE J. Solid State Circuits, vol. 26, pp. 1998-2007, 1991.
    [30] M. Li, V. T. Rouf, and D. A. Horsley, “Substrate effect in squeeze film damping of lateral oscillating microstructures,” Proceedings, 26th International IEEE Micro Electro Mechanical Systems Conference (MEMS’13), Taipei, Taiwan, January 2013, pp.393-396.
    [31] J. S. Mitchell, “Low temperature wafer level vacuum packaging using Au-Si eutectic bonding and localized heating,” Ph.D. dissertation, Department of Mechanical Engineering, University of Michigan, Ann Arbor, 2008.
    [32] Y.-C. Sun, K.-C. Liang, C.-L. Cheng, M.-Y. Lin, R.-S. Chen, and W. Fang, “Performance improvement of CMOS-MEMS Pirani vacuum gauge with hollow heater design,” Technical Digest, the 18th International Conference on Solid-State Sensors & Actuators (Transducers’15), Anchorage, Alaska, USA, June 21-25, 2015, pp.1069-1072.
    [33] K. Brueckner, V. Cimalla, F. Niebelschutz, R. Stephan, K. Tonisch, O. Ambacher, and M. A. Hein, “Strain- and pressure-dependent RF response of microelectromechanical resonators for sensing applications,” J. Micromech. Microeng., vol. 17, no. 10, pp.2016-2023, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE