研究生: |
邱萬誠 Chiu, Wan-Cheng |
---|---|
論文名稱: |
結合振動式與熱傳式傳感器之大範圍CMOS-MEMS壓力計 A Wide-Range CMOS-MEMS Pressure Sensor with Combined Resonant and Thermal Transducers |
指導教授: |
李昇憲
Li, Sheng-Shian |
口試委員: |
鄭裕庭
方維倫 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 80 |
中文關鍵詞: | CMOS-MEMS 、雙鉗樑音叉形共振器 、Pirani 、壓力計 、Ring-down |
外文關鍵詞: | CMOS-MEMS, DETF Resonator, Pirani, Pressure Sensor, Ring-down |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中我們透過現有之TSMC 0.35μm CMOS製程實現了單一元件上具備雙鉗樑音叉型共振傳感器以及Pirani壓力計,並且於不同之壓力下量測得到共振器之壓力感測區間為3 Torr至200 Torr而Pirani壓力計之感測區間為0.06 Torr至4 Torr,因此達到了總感測區間為0.06 Torr至200 Torr之壓力範圍,並且透過數據處理可以使感測區間加大至0.02~400 Torr。本研究之最大特色在於藉由元件設計方式實現在單一元件上透過兩種不同的感測機制量測壓力,因此可以大幅縮小元件之使用面積。
一般的共振式壓力感測器由於操作成振盪器模式,因此雖然具有高敏感度的優點,但是容易受到雜散電容的影響,而且有較高的功率消耗,並且從其輸出訊號只能得到共振頻的資訊而無法提供Q值。而相較之下,Ring-down的量測方式可以同時得知Q值以及共振頻,並且較不易受到雜散電容之影響。由於Ring-down操作手法的特性使得相較於振盪器有著極低的功率消耗,然而此種方式之敏感度則較前者為低。
當給予共振器一輸入方波時,透過製作出之雙鉗樑音叉型共振器,本研究成功地量測到共振器因Ring-down而產生的運動電流,並且透過Ring-down方式量測,成功地萃取出於不同壓力下時之Q值,以進行壓力感測。
This work reports the realization of double ended tuning fork (DETF) resonant transducer and Pirani gauge on a single device through the use of TSMC 0.35μm CMOS process technology. Through the measurement of DETF resonator under different pressure, a dynamic range of 3Torr to 200Torr was obtained; a dynamic range of 0.06Torr to 4Torr for the Pirani gauge; and a total combined dynamic range of 0.06Torr to 200Torr. By the technique of data post-processing, this work was able to enhance the dynamic range to 0.02Torr to 400Torr. The most prominent feature of this work is the realization of two different pressure sensing mechanisms on a single device thus achieving a smaller device area while maintaining a large dynamic range.
Usually resonant type pressure sensors are operated as an oscillator. Although it has a high sensitivity, this type of sensor is susceptible to the effect of parasitic capacitance and it has higher power consumption; also through the output signal only the frequency can be obtained. In contrast, by using the Ring-down measurement strategy both the Q factor and resonant frequency can be acquired with the additional benefit of avoiding parasitic capacitance effect. Due to the nature of Ring-down, it has a relatively lower power consumption compared to oscillator; however, it has a lower sensitivity.
By applying a square wave voltage signal to the designed DETF resonator, the motional current from the resonator due to the Ring-down motion was successfully measured. The Q factor at various pressures was also successfully extracted from the Ring-down waveform.
[1] J.-S. Park and Y. B. Gianchandani, “A servo-controlled capacitive pressure sensor using a capped-cylinder structure microfabricated by a three-mask process,” IEEE/ASME Journal of Microelectromechanical Systems, vol. 12, no. 2, pp.209-220, 2003.
[2] A. DeHennis and K. D. Wise, “An all-capacitive sensing chip for absolute pressure, temperature, and relative humidity,” Technical Digest, the 12th International Conference on Solid-State Sensors & Actuators (Transducers’03) , Boston, MA, June 2003, pp.1860-1863.
[3] T. J. Harpster, B. Stark, and K. Najafi, “A passive wireless integrated humidity sensor,” Sensors and Actuators A: Physical, vol. 95, no. 2-3, pp.100-107, 2002.
[4] J. A. Potkay, J. A. Driscoll, M. Agah, R. D. Sacks and K. D. Wise, “A high-performance microfabricated gas chromatography column,” Proceedings, 16th International IEEE Micro Electro Mechanical Systems Conference (MEMS’03), Kyoto, Japan, January 2003, pp.395-398.
[5] W.-C. Tian, S. W. Pang, C. J. Lu and E. T. Zellers, “Microfabricated preconcentrator/focuser for a micro-scale gas chromatograph,” IEEE/ASME Journal of Microelectromechanical Systems, vol. 12, pp.264-272, 2003.
[6] Y.-W. Lin, S. Lee, S.-S. Li, and C. T.-C. Nguyen, “60-MHz wine glass micromechanical disk reference oscillator,” Technical Digest, 2004 IEEE International Solid-State Circuits Conference, San Francisco, California, Feb. 15-19, 2004, pp.322-323.
[7] Y.-W. Lin, et al., “Series-resonant VHF micromechanical resonator reference oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp.2477-2491, 2004.
[8] Y.-W. Lin, S.-S. Li, Z. Ren, and Clark T.-C. Nguyen, “Low phase noise array-composite micromechanical wine-glass disk oscillator,” Technical Digest, 2005 IEEE International Electron Devices Meeting, Washington, DC, Dec. 5-7, 2005, pp. 287-290.
[9] S.-S. Li, et al., “Bridged micromechanical filters,” Proceedings, IEEE International Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conference, Montreal, Canada, Aug. 24-27, 2004, pp.144-150.
[10] S.-S. Li, Y.-W. Lin, Z. Ren, and C. T.-C. Nguyen, “Self-switching vibrating micromechanical filter bank,” Proceedings, IEEE Joint International Frequency Control Symposium, Vancouver, Canada, Aug. 2005, pp.135-141.
[11] S.-S. Li, Y.-W. Lin, Z. Ren, and C. T.-C. Nguyen, “Disk-array design for suppression of unwanted modes in micromechanical composite-array filters,” Technical Digest, 19th International IEEE Micro Electro Mechanical Systems Conference (MEMS’06), Istanbul, Turkey, Jan. 22-26, 2006, pp.866-869.
[12] S.-S. Li, et al., “An MSI micromechanical differential disk-array filter,” Technical Digest, the 14th International Conference on Solid-State Sensors & Actuators (Transducers’07), Lyon, France, June 10-14, 2007, pp.307-311.
[13] S.-S. Li, et al., “A micromechanical parallel-class disk-array filter,” Proceedings, 2007 IEEE International Frequency Control Symposium, Geneva, Switzerland, May 29-June 1, 2007, pp.1356-1361.
[14] S.-S. Li, Y.-W. Lin, Y. Xie, Z. Ren, and Clark T.-C. Nguyen, “Small % bandwidth design of a 431-MHz notched-coupled micromechanical hollow-disk ring mixer-filter,” Proceedings, IEEE International Ultrasonics Symposium, Rotterdam, the Netherlands, Sept. 18-21, 2005, pp.1295-1298.
[15] Yole Development, http://www.yole.fr/
[16] G. Lammel, J. Gutmann, L. Marti, and M. Dobler, “Indoor navigation with mems sensors,” Procedia Chemistry, 2009, 1, pp.532-535.
[17] C. Ravariu, F. Ravariu, D. Dobrescu, L. Dobrescu, C. Codreanu, and M. Avram, “A designing rule for a pressure sensor with PZT layer,” Semiconductor Conference, Sinaia, Romania, Oct., 2001, pp. 379-382.
[18] C. S. Smith, “Piezoresistance effect in germanium and silicon,” Phys. Rev., 1954, 94, pp. 42-49.
[19] A. Gieles, “Subminiature silicon pressure transducers,” Solid-State Circuits Conference, Philadelphia, PA, USA, Feb., 1969, pp. 108-109.
[20] A. V. Chavan, and K. D. Wise, “A monolithic fully-integrated vacuum-sealed CMOS pressure sensor,” IEEE Trans. on Electron Devices, vol. 49, pp. 164-169, 2002.
[21] J. Pettine, V. Petrescu, D. M. Karabacak, M. Vandecasteele, M. Crego-Calama, and C. V. Hoof, “Power-efficient oscillator-based readout circuit for multichannel resonant volatile sensors,” IEEE Trans. on Biomedical Circuits and Systems, vol. 6, no. 6, pp. 542-551, Dec., 2012.
[22] Y. Yan, Z. Zeng, C. Chen, H. Jiang, Z.-Y. Chang, D. M. Karabacak, and M. A.P. Pertijs, “An energy-efficient reconfigurable readout circuit for resonant sensors based on ring-down measurement,” Proceedings, IEEE Sensors Conference, Valencia, Nov., 2014, pp. 221-224.
[23] H. Jiang, Z.-Y. Chang, and M. Pertijs, “A 30ppm <80nJ ring-down-based readout circuit for resonant sensors,” Proceedings, IEEE International Solid-States Circuits Conference, San-Francisco, CA, USA, Feb., 2015, pp. 482-483.
[24] F. D. Bannon, J. R. Clark, and C. T.-C. Nguyen, “High-Q HF microelectromechanical filters,” IEEE Journal of Solid-State Circuits, vol. 35, no. 4, pp. 512-526, April 2000.
[25] M. Bao, H. Yang, H. Yin, and Y. Sun, “Energy transfer model for squeeze-film air damping in low vacuum,” J. Micromech. Microeng., vol. 12, pp. 341-346, 2002.
[26] M. A. Perez and A. M. Shkel, “The effect of squeeze film constriction on bandwidth improvement in interferometric accelerometers,” J. Micromech. Microeng., vol. 18, no. 5, p. 055031, May 2008.
[27] M. Andrews, I. Harris, and G. Turner, “A comparison of squeezefilm theory with measurements on a microstructure,” Sens. Actuators A: Physical, vol. 36, no. 1, pp. 79-87, Mar. 1993.
[28] J. J. Blech, “On isothermal squeeze films,” J. Tribol., vol. 105, no. 4, pp. 615-620, 1983.
[29] C. H. Mastrangelo and R. S. Muller, “Microfabricated thermal absolute-pressure sensor with on-chip digital front-end processor,” IEEE J. Solid State Circuits, vol. 26, pp. 1998-2007, 1991.
[30] M. Li, V. T. Rouf, and D. A. Horsley, “Substrate effect in squeeze film damping of lateral oscillating microstructures,” Proceedings, 26th International IEEE Micro Electro Mechanical Systems Conference (MEMS’13), Taipei, Taiwan, January 2013, pp.393-396.
[31] J. S. Mitchell, “Low temperature wafer level vacuum packaging using Au-Si eutectic bonding and localized heating,” Ph.D. dissertation, Department of Mechanical Engineering, University of Michigan, Ann Arbor, 2008.
[32] Y.-C. Sun, K.-C. Liang, C.-L. Cheng, M.-Y. Lin, R.-S. Chen, and W. Fang, “Performance improvement of CMOS-MEMS Pirani vacuum gauge with hollow heater design,” Technical Digest, the 18th International Conference on Solid-State Sensors & Actuators (Transducers’15), Anchorage, Alaska, USA, June 21-25, 2015, pp.1069-1072.
[33] K. Brueckner, V. Cimalla, F. Niebelschutz, R. Stephan, K. Tonisch, O. Ambacher, and M. A. Hein, “Strain- and pressure-dependent RF response of microelectromechanical resonators for sensing applications,” J. Micromech. Microeng., vol. 17, no. 10, pp.2016-2023, 2007.