研究生: |
郭瑞麟 Kuo, Jui-Lin |
---|---|
論文名稱: |
模糊暗物質的宇宙學模擬及誤差討論和黎曼-α觀測的數據比較 Cosmological Simulation of Fuzzy Dark Matter with Uncertainty Discussion and Comparison with Lyman-Alpha Forest |
指導教授: |
張敬民
Cheung, King-Man |
口試委員: |
吳建宏
Ng, Kin-Wang 蔡岳霖 Tsai, Yue-Lin |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 暗物質 、宇宙大尺度結構 、多體模擬 |
外文關鍵詞: | dark matter, large-scale structure of the universe, N-body simulation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
宇宙中的暗物質可能為模糊暗物質所組成。當模糊暗物質的質量小於10^{−22} eV時,它不但能有和冷暗物質一樣的大尺度結構,同時它也能解決冷暗物質所碰到的“小尺度危機”。利用最近兩組Lyman-α觀測的數據(BOSS 和 XQ-100),一些研究推測模糊暗物質的最低可允許質量應該要被提高到10^{−21} eV。但是這個最低允許質量是由一個冷暗物質的模擬加上模糊暗物質的初始狀態所得出,並沒有考慮模糊暗物質的額外效應:量子壓力。量子壓力可能會在尺度小的地方產生不可忽略的效應。在利用一維模擬確認我們的方法的有效性後,我們有系統地從宇宙尺度模擬探究量子壓力的效應,並且發現在小尺度區間,量子壓力會對物質功率頻譜和暗物質暈質量方程式造成額外的抑制。此外我們計算了相對應於Lyman-α觀測的通量功率頻譜並和 BOSS 和 XQ-100 的數據做比較。我們仔細地探討計算通量功率頻譜時的誤差和氫原子氣體溫度造成的誤差,並推斷一旦適當地考慮量子壓力的效應和中性氫原子氣體溫度所造成的誤差就不能以統計上顯著地排除能解決小尺度危機的質量區間 (質量小於10^{−22} eV的模糊暗物質)。
Fuzzy dark matter is one of the dark matter candidates, which can not only have the same large-scale success of cold dark matter but also alleviates the ”small scale crisis” of it when the fuzzy dark matter mass is smaller than 10^{−22} eV. With recent Lyman-alpha forest data from BOSS and XQ-100, some studies suggested that the lower mass limit on the fuzzy dark matter particles is lifted up to 10^{−21} eV. However, such a limit was obtained by cold dark matter simulations with the fuzzy dark matter initial condition and the quantum pressure of fuzzy dark matter was not taken into account which could have generated non-trivial effects on small scales. After checking the validity of our methodology using one-dimensional simulation, we investigate the effects of quantum pressure in cosmological simulations systematically, and find that quantum pressure leads to further suppression on the matter power spectrum on small scales, as well as the halo mass function in the low mass end. Furthermore, we estimate the one-dimensional flux power spectrum of Lyman-alpha forest, and compare it with the data from BOSS and XQ-100. We carefully estimate the uncertainty in the calculation of one-dimensional flux power spectrum due to the temperature of hydrogen gas. We conclude that if one properly takes into account the effect of quantum pressure and the temperature of the hydrogen gas, one cannot exclude the fuzzy dark matter of mass smaller than 10^{−22} eV, which is the interesting mass range for solving the small scale crisis, at statistically significant levels.
[1] N. A. Bahcall, L. M. Lubin, and V. Dorman, The Astrophysical Journal Letters 447, L81 (1995), astro-ph/9506041.
[2] J. Einasto, A. Kaasik, and E. Saar, Nature 250, 309 (1974).
[3] D. Clowe et al., The Astrophysical Journal Letters 648, L109 (2006), astro-
ph/0608407.
[4] P. Ade et al., Astronomy & Astrophysics 594, A13 (2016), 1502.01589.
[5] M. Tegmark et al., The Astrophysical Journal 606, 702 (2004), astro-ph/ 0310725.
[6] D. H. Weinberg, J. S. Bullock, F. Governato, R. K. de Naray, and A. H. Peter, Proceedings of the National Academy of Sciences 112, 12249 (2015), 1306.0913.
[7] A. Pontzen and F. Governato, Nature 506, 171 (2014), 1402.1764.
[8] P. Colin, V. Avila-Reese, and O. Valenzuela, The Astrophysical Journal 542,
622 (2000).
[9] D. N. Spergel and P. J. Steinhardt, Physical Review Letters 84, 3760 (2000), astro-ph/9909386.
[10] W. Hu, R. Barkana, and A. Gruzinov, Physical Review Letters 85, 1158 (2000), astro-ph/0003365.
[11] D. J. Marsh, Physics Reports 643, 1 (2016), 1510.07633.
[12] X. Du, C. Behrens, and J. C. Niemeyer, Monthly Notices of the Royal As-
tronomical Society 465, 941 (2017), 1608.02575.
[13] P. Mocz et al., (2017), 1705.05845.
[14] R. Hlozek, D. Grin, D. J. Marsh, and P. G. Ferreira, Physical Review D 91,
103512 (2015), 1410.2896.
[15] B. Bozek, D. J. Marsh, J. Silk, and R. F. Wyse, Monthly Notices of the Royal
Astronomical Society 450, 209 (2015), 1409.3544.
[16] H.-Y. Schive, T. Chiueh, and T. Broadhurst, Nature Physics 10, 496 (2014),
1406.6586.
[17] V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton, and G. D. Becker, arXiv preprint arXiv:1703.04683 (2017).
[18] E. Armengaud, N. Palanque-Delabrouille, C. Yèche, D. J. Marsh, and J. Baur, arXiv preprint arXiv:1703.09126 (2017).
[19] T. Kobayashi, R. Murgia, A. De Simone, V. Iršič, and M. Viel, ArXiv e-prints (2017), 1708.00015.
[20] P. Mocz and S. Succi, Physical Review E 91, 053304 (2015), 1503.03869.
[21] J. Veltmaat and J. C. Niemeyer, arXiv preprint arXiv:1608.00802 (2016).
[22] J. Zhang, Y.-L. S. Tsai, K. Cheung, and M.-C. Chu, arXiv preprint arXiv: 1611.00892 (2016).
[23] B. LHuillier, C. Park, and J. Kim, New Astronomy 30, 79 (2014).
[24] J. Bagla and J. Prasad, Monthly Notices of the Royal Astronomical Society
370, 993 (2006).
[25] K. Heitmann, M. White, C. Wagner, S. Habib, and D. Higdon, The Astro-
physical Journal 715, 104 (2010).
[26] J.-h. Kim et al., The Astrophysical Journal Supplement Series 210, 14 (2013).
[27] F. Sembolini et al., Monthly Notices of the Royal Astronomical Society 457, 4063 (2016).
[28] B. W. Oshea, K. Nagamine, V. Springel, L. Hernquist, and M. L. Norman, The Astrophysical Journal Supplement Series 160, 1 (2005).
[29] F. Vazza et al., Monthly Notices of the Royal Astronomical Society 418, 960 (2011).
[30] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys. Rev. D95, 043541 (2017), 1610.08297.
[31] H. Mo, F. Van den Bosch, and S. White, Galaxy formation and evolution (Cambridge University Press, 2010).
[32] J.-W. Lee, (2017), 1704.05057.
[33] M. R. Baldeschi, R. Ruffini, and G. B. Gelmini, Phys. Lett. 122B, 221 (1983).
[34] T. Matos and D. Nunez, (2003), astro-ph/0303455.
[35] S. U. Ji and S. J. Sin, Phys. Rev. D50, 3655 (1994), hep-ph/9409267.
[36] J.-W. Lee, Phys. Lett. B756, 166 (2016), 1511.06611.
[37] L. M. Widrow and N. Kaiser, Astrophys. J. 416, L71 (1993).
[38] A. Ringwald, Axions and Axion-Like Particles, in Proceedings, 49th Ren- contres de Moriond on Electroweak Interactions and Unified Theories: La Thuile, Italy, March 15-22, 2014, pp. 223–230, 2014, 1407.0546.
[39] E. Madelung, Zeitschrift für Physik 40, 322 (1927).
[40] G. Gilmore et al., Astrophys. J. 663, 948 (2007), astro-ph/0703308.
[41] L. E. Strigari et al., Nature 454, 1096 (2008), 0808.3772.
[42] M. G. Walker and J. Peñarrubia, Astrophys. J. 742, 20 (2011), 1108.2404.
[43] N. C. Amorisco, A. Agnello, and N. W. Evans, Monthly Notices of the Royal Astronomical Society 429, L89 (2013), 1210.3157.
[44] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 462, 563 (1996), astro-ph/9508025.
[45] N. Y. Gnedin and L. Hui, Mon. Not. Roy. Astron. Soc. 296, 44 (1998), astro-ph/9706219.
[46] N. Palanque-Delabrouille et al., Astron. Astrophys. 559, A85 (2013), 1306.5896.
[47] K. S. Dawson et al., Astrophys. J. 145, 10 (2013), 1208.0022.
[48] V. Springel, Monthly Notices of the Royal Astronomical Society 364, 1105
(2005).
[49] D. J. Eisenstein and W. Hu, The Astrophysical Journal 496, 605 (1998), astro-ph/9709112.
[50] W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett. 85, 1158 (2000), astro-ph/0003365.
[51] H.-Y. Schive, T. Chiueh, T. Broadhurst, and K.-W. Huang, Astrophys. J. 818, 89 (2016), 1508.04621.
[52] M. Crocce, S. Pueblas, and R. Scoccimarro, Astrophysics Source Code Li- brary 1, 01005 (2012).
[53] A. Lewis and A. Challinor, Astrophysics Source Code Library (2011).
[54] M. Viel, G. D. Becker, J. S. Bolton, and M. G. Haehnelt, Physical Review D
88, 043502 (2013).
[55] A. Rorai et al., Science 356, 418 (2017).
[56] A. J. S. Hamilton, Linear redshift distortions: A Review, in Ringberg Work- shop on Large Scale Structure Ringberg, Germany, September 23-28, 1996, 1997, astro-ph/9708102.
[57] V. Iršič et al., Mon. Not. Roy. Astron. Soc. 466, 4332 (2017), 1702.01761.
[58] S. R. Knollmann and A. Knebe, Astrophys. J. Suppl. 182, 608 (2009), 0904.3662.
[59] J. A. Regan, M. G. Haehnelt, and M. Viel, Monthly Notices of the Royal Astronomical Society 374, 196 (2007).
[60] S. Bird et al., Monthly Notices of the Royal Astronomical Society , sts590 (2013).
[61] G. L. Bryan et al., The Astrophysical Journal Supplement Series 211, 19 (2014).
[62] V. Springel, Proceedings of the International Astronomical Union 6, 203 (2010).
[63] R. Cen, P. McDonald, H. Trac, and A. Loeb, Astrophys. J. 706, L164 (2009), 0907.0735.
[64] A. Garzilli, A. Boyarsky, and O. Ruchayskiy, (2015), 1510.07006.
[65] M. Viel, J. Schaye, and C. M. Booth, Mon. Not. Roy. Astron. Soc. 429, 1734 (2013), 1207.6567.