簡易檢索 / 詳目顯示

研究生: 高肇陽
Chao-Yang Kao
論文名稱: 一個四分之一畫素精準度的H.264移動估計器
A Quarter-pixel Accurate Motion Estimator for H.264 Advanced Video Coding
指導教授: 林永隆
Youn-Long Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 34
中文關鍵詞: 移動估計
外文關鍵詞: H.264, motion estimation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出一個H.264/AVC的四分之一畫素精準度 (Quarter-pixel Accurate)、可變區塊大小 (Variable Block Size) 移動估計器 (Motion Estimator)。此移動估計器包含全畫素 (Full-pixel) 移動估計以及四分之一畫素移動估計兩大部分,前者是由256個處理單元 (PE) 所構成的二維心脈式陣列 (Systolic Array),並重複使用先前運算的結果。其採用全域搜尋的方法,並且能在每一個時脈比對一個候選區塊 (Candidate Block)。它算出畫素差值的絕對值總合 (Sum of Absolute Difference) 和移動向量 (Motion Vector),並傳給四分之一畫素移動估計器。而後者是一個數學模型,負責調整移動向量到四分之一畫素精準度。我們採用台積電0.13μm CMOS的製程來合成設計。在50MHz的頻率以及195K邏輯閘之下,此移動估計器可以處理720x480解析度、每秒30頁的影片。


    We propose a variable block-size motion estimator (VBSME) down to quarter-pixel precision for the next generation video coding standard H.264. The proposed motion estimator consists of a full-pixel precision part and a sub-pixel precision part. The former is a 2D systolic array with 256 processing elements (PE) employing a computation result reuse methodology. Its full search algorithm can complete matching a candidate macroblock every clock cycle. It figures out the sum of absolute differences (SAD) and motion vectors (MV) at full-pixel precision for the sub-pixel precision part. The sub-pixel precision part is a mathematical model to refine the SADs and the MVs to quarter-pixel precision. Synthesized into a TSMC 0.13μm CMOS technology, it takes 195K gates at 50MHz to process 720x480 video sequences at 30 frames per second (fps).

    ABSTRACT II CONTENTS III LIST OF FIGURES V LIST OF TABLES VI CHAPTER 1 1 INTRODUCTION 1 1.1 H.264/ADVANCED VIDEO CODING 1 1.2 MOTION ESTIMATION 4 1.2.1 Block-based Motion Estimation 4 1.2.2 New features of Motion Estimation in H.264 5 1.2.3 Profiling H.264 Encoder 7 CHAPTER 2 9 PREVIOUS WORK 9 2.1 MOTION ESTIMATION ALGORITHMS 9 2.1.1 Full-pixel Motion Estimation 9 2.1.2 Sub-pixel Motion Estimation 10 2.2 MOTION ESTIMATION ARCHITECTURES 11 2.2.1 Full-pixel Motion Estimation 11 2.2.2 Sub-pixel Motion Estimation 12 CHAPTER 3 14 PROPOSED ARCHITECTURE 14 3.1 FULL-PIXEL PRECISION MOTION ESTIMATOR 15 3.1.1 Hardware Architecture 15 3.1.2 Data-Reuse Methodology 19 3.2 SADS BUFFER 20 3.3 QUARTER-PIXEL PRECISION MOTION VECTORS REFINER 22 CHAPTER 4 27 EXPERIMENTAL RESULTS 27 CHAPTER 5 29 CONCLUSIONS 29 CHAPTER 6 30 FUTURE WORK 30 BIBLIOGRAPHY 31

    [1] ITU-T and ISO/IEC JTC 1,”Generic coding of moving pictures and associated audio information”, ITU-T Recommendation H.262 – ISO/IEC 13818-2 (MPEG-2), November 1994.
    [2] Joint Video Team of ITU-T and ISO/IEC JTC 1, “Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification”, Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-G050, March 2003.
    [3] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of the H.264/AVC video coding standard”, IEEE Transactions on Circuits and Systems for Video Technology, pp. 560-570, July 2003
    [4] ISO/IEC JTC 1, “Coding of audio-visual objects – Part 2: Visual”, ISO/IEC 14496-2 (MPEG-4 visual version 1), April 1999; Amendment 1 (version 2), February 2000; Amendment 4 (streaming profile), January 2001.
    [5] J. R. Jain and A. K. Jain, “Displacement measurement and its application in interframe image coding”, IEEE Transactions on Communication, pp. 1799-1808, December 1981.
    [6] ISO/IEC, “Information technology – coding of moving pictures and associated audio for digital storage media at up about 1.5 Mbit/s”, ISO/IEC 11172, November 1993.
    [7] H.264/Aavanced Video Coding Reference Software, JM9.0, November 2004. http://iphome.hhi.de/suehring/tml/
    [8] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishiguro, “Motion compensated interframe coding for video conferencing”, Proceedings of National Telecommunication Conference, pp. C9.6.1-C9.6.5, November 1981.
    [9] J. Y. Tham, S. Ranganath, M. Ranganath, and A. A. Kassim, “A novel unrestricted center-biased diamond search algorithm for block motion estimation”, IEEE Transactions on Circuits and Systems for Video Technology, pp. 369-377, August 1998.
    [10] S. Zhu and K. Ma, “A new diamond search algorithm for fast block matching motion estimation”, Proceedings of International Conference on Information, Communications and Signal Processing, pp. 292-296, September 1997.
    [11] B. Zhou and J. Chen, “A fast two-step search algorithm for half-pixel motion estimation”, Proceedings of the IEEE International Conference on Electronics, Circuits and Systems, pp. 611-614, December 2003.
    [12] S. Y. Yap and J. V. Mccanny, “A VLSI architecture for advanced video coding motion estimation”, Proceedings of IEEE International Conference on Application-Specific Systems, Architectures, and Processors, pp. 293-301, June 2003.
    [13] K. Ishihara, S. Masuda, S. Hattori, H. Nishikawa, Y. Ajioka, T. Yamada, H. Amishiro, S. Uramoto, M. Yoshimoto and T. Sumi, ”A half-pel precision MPEG2 motion-estimation processor with concurrent three-vector search”, IEEE International Solid-State Circuits Conference, pp. 288-289, February 1995.
    [14] G. Fujita, T. Onoye and I. Shirakawa, “A new motion estimation core dedicated to H.263 video coding”, Proceedings of IEEE International Symposium on Circuits and Systems, pp. 1161-1164, June 1997.
    [15] C. M. Wu and D. K. Yeh, “A VLSI motion estimator for video image compression”, IEEE Transactions on Consumer Electronics, pp. 837-846, November 1993.
    [16] Y. W. Huang, T. C. Wang, B. Y. Hsieh and L. G. Chen, “Hardware architecture design for variable block size motion estimation in MPEG-4 AVC/JVT/ITU-T H.264”, Proceedings of IEEE International Symposium on Circuits and Systems, pp. 796-799, May 2003.
    [17] J. F. Shen, T. C. Wang and L. G. Chen, “A novel low-power full-search block-matching motion-estimation design for H.263+”, IEEE Transactions on Circuits and Systems for Video Technology, pp. 890-897, July 2001.
    [18] M. Sayed and W. Badawy, “A half-pel motion estimation architecture for MPEG-4 applications”, Proceedings of IEEE International Symposium on Circuits and Systems, pp. 792-795, May 2003.
    [19] J. C. Tuan, T. S. Chang and C. W. Jen, “On the data reuse and memory bandwidth analysis for full-search block-matching VLSI architecture”, IEEE Transactions on Circuits and Systems for Video Technology, pp. 61-72, January 2002.
    [20] J. W. Suh and J. Jeong, “Fast sub-pixel motion estimation techniques having lower computational complexity”, IEEE Transactions on Consumer Electronics, pp. 968-973, August 2004.
    [21] http://www.novas.com
    [22] M. Keating and P. Bricaud, “Reuse Methodology Manual for System-On-A-Chip Designs”, Kluwer Academic Publishers CO., 2002
    [23] http://www.transeda.com
    [24] http://www.synopsys.com

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE