研究生: |
許智婷 |
---|---|
論文名稱: |
Universal scaling of extinction time in a cyclic-competing ecosystem |
指導教授: | 林秀豪 |
口試委員: |
吳國安
陳宣毅 張正宏 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 41 |
中文關鍵詞: | 生物多樣性 、剪刀石頭布系統 、物種滅絕 |
外文關鍵詞: | cyclic competition, biodiversity, extinction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中,利用電腦模擬分析,我們研究懲罰輕重如何影響剪刀石頭布系統的穩定性。我們發現,依不同輕重的的懲處,系統喪失多樣性的平均時間隨著系統人口變化有很不一樣的趨勢。臨界的懲處值為該遊戲總得失為零的情況,重懲處的系統傾向不穩定,懲罰越重多樣性越快喪失,而輕懲處的系統多樣性保存時間與系統大小呈指數關係,所以在合理生物時間內,可以看作是穩定的生態系統。最後,我們呈現了一個可以同時描述這兩種不同趨勢的相的方程式。
In this thesis, we study the systems of simple rock-paper-scissors games with different punishments s for the loser of the games. In common RPS games, the loser’s punishment is the same as the winner’s gain. When we adjust the punishment to smaller or bigger quantities, the systems’ stabilities are dramatically changed with two different trends. We analyzed the mean extinction time and obtained two different kinds of extinction behavior separated by the critical point. For strong selection regime, the mean extinction time grows logarithmically and does not be prolonged much with larger population size. For weak selection regime, the mean extinction time grows exponentially as system size goes up and the ecosystem is exponentially protected from extinction. Furthermore, a universal scaling function for the two phases is presented at the end of the thesis.
[1] R. M. May, Stability and Complexity in Model Ecosystems (Cambridge University Press, Cambridge, England, 1974).
[2] J. Maynard Smith, Models in Ecology (Cambridge University Press, Cambridge, England, 1974).
[3] R. E. Michod, Darwinian Dynamics (Princeton University Press, Princeton, 2000).
[4] R. V. Sole and J. Basecompte, Self-Organization in Complex Ecosystems (Princeton University Press, Princeton, 2006).
[5] D. Neal, Introduction to Population Biology (Cambridge University Press, Cambridge, England, 2004).
[6] B. Drossel, Adv. Phys. 50, 209 (2001).
[7] B. Kerr, M. A. Riley, M. W. Feldma and B. J. M. Bohannan, Nature
418, 171 (2002).
[8] T. L. Czaran, R. F. Hoekstra and L. Pagie, Proc. Natl Acad. Sci. USA
99, 786 (2002).
[9] M. A. Nowak and K. Sigmund, Science 303, 793 (2004).
[10] S. A. West, A. S. Griffin, A. Gardner and S. P. Diggle, Nature Rev. Micro. 4, 597 (2006).
[11] G. Szabo, and G. Fath, Phys. Rep. 446, 97 (2007).
[12] M. A. Nowak, Evolutionary Dynamics (Harvard University, Cambridge,
MA, 2006).
[13] J. Hofbauer, K.Sigmund, Evolutionary Game and Population Dynamics (Cambridge University Press, 1998).
38

[14] J. Maynard Smith, Evolution and the Theory of Games (Cambridge University Press, Cambrige, 1982).
[15] M. A. Nowak, Science 314, 1560 (2006).
[16] J. Cremer, A. Melbinger, E. Frey (2012), Scientific Reports 2: 281
doi:10.1038/srep00281.
[17] M. A. Nowak, A. Sasaki, C. /and D. Fudenberg, Nature 428, 646 (2004)
[18] B. Sinervo and C. M. Lively, Nature 380, 240 (1996).
[19] B. C. Kirkup and M. A. Riley, Nature 428, 412 (2004).
[20] J. C. Claussen, and A. Traulsen, Phys. Rev. Lett. 100, 058104 (2008)
[21] J. C. Claussen, and A. Traulsen, Phys. Rev. Lett. 95, 238701 (2005)
[22] M. Berr, T. Reichenbach, M. Schottenloher and E. Frey, Phys. Rev. Lett. 102, 048102 (2009).
[23] E. Frey, Physica A 389, 4265 (2010) and references therein.