簡易檢索 / 詳目顯示

研究生: 朱祐萱
Chu, Yu-Hsuan
論文名稱: 高效能液相層析儀搭配2,4-二硝基苯肼衍生法量測米酒中的脂肪醛
Determination of linear aliphatic aldehydes in rice wines by high-performance liquid chromatography using 2,4-dinitrophenylhydrazine derivatization
指導教授: 吳劍侯
Wu, Chien-Hou
口試委員: 吳淑褓
Wu, Shu-Pao
蔡詩偉
Tsai, Shin-Wei
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 78
中文關鍵詞: DNPH米酒乙醇
外文關鍵詞: DNPH, rice wine, aldehyde, alcohol
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 酒中醛類主要的來源為發酵步驟,發酵過程中所選用的原料、酵母菌以及不同的發酵階段和設定參數,皆會影響酒中醛類的濃度,過量的醛類對人體有不良影響,因此有效的監控酒中醛類的含量是十分重要的。本研究利用DNPH (2,4-dinitrophenylhydrazine) 衍生法搭配HPLC-UV量測米酒中的醛,並藉由改變酸濃度、DNPH濃度探討乙醇對衍生反應的影響。由衍生反應的反應速率常數及平衡常數探討,對此反應有更進一步的了解。為了排除乙醇在衍生反應中生成乙醛的可能性,實驗中利用兩種不同酒精依不同比例配製成相同濃度的酒精溶液,探討其乙醛含量的變化。實驗結果顯示乙醇在本研究的分析條件下僅影響衍生時間,並不會氧化成乙醛。此方法也成功應用到真實樣品中醛類的量測與定量。真實樣品中測得的乙醛含量範圍落在360-2304 uM之間。本研究也針對酒及酒糟中的胺基酸含量做初步的定量,結果顯示酒糟中的胺基酸含量比酒中的多2到4個數量級。


    Aldehydes occur in rice wines and most of them arise in fermentation, which can be varied by raw material, species of yeasts, fermentation stages, and different processes. Aldehydes exhibit adverse health effects to human beings. Therefore, it is important to improve the quality of rice wine by monitoring the concentrations of aldehydes in the production line. In this method, aldehydes in rice wines were derivatized with 2,4-dinitrophenylhydrazine (DNPH) and analyzed by HPLC with UV detector. The effect of alcohol content on the derivatization reaction was studied by varying concentrations of HCl and DNPH. The derivatization reactions were investigated to obtain the rate constants and equilibrium constants. In order to exclude the possible formation of acetaldehyde from derivatization, acetaldehyde concentration in 40% alcohol by mixing two different alcohol sources was investigated. The results confirmed that the derivatization reaction would not oxidize alcohol to acetaldehyde and the existence of alcohol would only affect the derivatization rate. This method has been successfully applied to determine the concentration of acetaldehyde in rice wines. Concentrations of acetaldehyde in rice wines were in the range of 360-2304 uM. Amino acids in rice wine and wine lees were also investigated in the study. In our analysis, the amounts of amino acids in wine lees were approximately 2 to 4 order of magnitude more than those in rice wines.

    目錄 中文摘要 I 英文摘要 II 謝誌 III 目錄 IV 圖目錄 V 表目錄 VII 第一章 前言 1 1.1 簡介 1 1.2 研究動機 1 第二章 文獻回顧 2 2.1 酒中的醛類及其來源 2 2.2 乙醛 3 2.2.1 乙醛在日常生活中的來源 3 2.2.2 人體暴露於乙醛的主要途徑 5 2.2.3 酒中的乙醛 6 2.2.4 乙醛的毒性 8 2.3 醛的量測方法 10 2.4 醛與DNPH 13 第三章 實驗方法 17 3.1 實驗裝置 17 3.1.1 高效能液相層析儀 17 3.1.2 其他儀器 18 3.2 實驗藥品 18 3.2.1 母液配製 19 3.3 真實樣品 21 3.4 分析流程 21 3.4.1 樣品溶劑配製方法 21 3.4.2 醛的分析流程 22 3.4.3 真實樣品的分析流程 23 3.5 實驗流程圖 27 第四章 結果與討論 28 4.1 標準品配製方法的探討 28 4.2 乙醇對DNPH衍生反應的影響 35 4.2.1 改變比例 36 4.2.2 改變酸濃度 37 4.2.3 改變DNPH濃度 38 4.2.4 反應速率常數 42 4.2.5 反應平衡常數 46 4.3 真實樣品量測 49 第五章 結論 58 第六章 未來展望 58 參考文獻 59 附錄1 常用溶劑性質表 64 附錄2 不同樣品溶劑之醛檢量線 65 附錄3 反應速率常數計算 66 附錄4 胺基酸檢量線 72 圖目錄 Fig. 2-1. Polymerization of polyethylene terephthalate 5 Fig. 2-2. Production process of rice wines 6 Fig. 2-3. Ethanol and acetaldehyde metabolism. 9 Fig. 2-4. DNPH derivatization 10 Fig. 2-5. PFBHA derivatization. 11 Fig. 2-6. Nash’s reaction. 11 Fig. 2-7. Mechanism for the formation of hydrazone in basic environment. 14 Fig. 2-8. Mechanism for the formation of hydrazone in acidic environment. 15 Fig. 2-9. Derivatization reaction of OPA/2-ME and amino acid. 16 Fig. 3-1. High Performance Liquid Chromatography (HPLC) 17 Fig. 3-2. Gradient elution program of HPLC-UV/vis for determining aldehydes. 20 Fig. 3-3. Chromatographic profile of nine aldehydes and acetone derivatized with DNPH for 30 min at pH 1.8. 22 Fig. 3-4. Chromatographic profile of ten amino acids. 26 Fig. 4-1. Change of peak area of nine aliphatic aldehydes after derivatization in different proportion of sample solvent. 29 Fig. 4-2. Chromatographic profile of nine aliphatic aldehydes derivatized with DNPH in different proportion of sample solvent. 29 Fig. 4-3. Chromatographic profile of different proportion of sample solvent derivatized with DNPH.. 30 Fig. 4-4. Definition of asymmetry factor. 31 Fig. 4-5. Asymmetry factor of peaks of nine aldehydes derivatized with DNPH in different proportion of sample solvent.. 32 Fig. 4-6. The relationship between limit of blank and sample solvent. 34 Fig. 4-7. Acetaldehyde impurities as function of alcohol-by-volume (%) in regular and absolute alcohols. 35 Fig. 4-8. Total concentration of acetaldehyde in 40% alcohol with the combination of 95% (regular alcohol, solvent A) and 99.8% (absolute alcohol, solvent B) 36 Fig. 4-9. Effect of different HCl concentration on peak area of acetaldehyde derivatized with DNPH in ethanol.. 38 Fig. 4-10. Effect of DNPH concentration on peak area of acetaldehyde derivatized with DNPH in 20% ethanol. 39 Fig. 4-11. Effect of DNPH concentration on peak area of acetaldehyde derivatized with DNPH in 40% ethanol.. 40 Fig. 4-12. Effect of DNPH concentration on peak area of acetaldehyde derivatized with DNPH in 60% ethanol. 40 Fig. 4-13. Effect of different DNPH concentration on concentration of acetaldehyde derivatized with DNPH in 20%, 40%, 60% ethanol and 10 M acetaldehyde in DIW. 41 Fig. 4-14. Effect of different DNPH concentration on concentration of acetaldehyde in DIW. 41 Fig. 4-15. Effect of DNPH concentration on the concentration of acetaldehyde in ethanol.. 42 Fig. 4-16. Investigation about rate constant of first order in 60% alcohol at room temperature. 43 Fig. 4-17. Rate constant (k’) as function of the concentration of DNPH. 44 Fig. 4-18. The relationship between rate constant and concentration of ethanol. 46 Fig. 4-19. Reciprocal hydrazone response of different ethanol concentration and acetaldehyde in DIW as function of reciprocal DNPH concentration. 48 Fig. 4-20. HPLC-UV chromatograms of rice wines. Dilute factor = 2 51 Fig. 4-21. HPLC-UV chromatograms of rice wines. Dilute factor = 1000 52 Fig. 4-22. Concentration of acetaldehyde in rice wines with storage time. 52 Fig. 4-23. Comparison of acetaldehyde concentration in real samples. 53 Fig. 4-24. HPLC-FL chromatogram of sample 1. 55 Fig. 4-25. HPLC-FL chromatogram of sample 2. 55 Fig. 4-26. HPLC-FL chromatogram of sample 3. 56 Fig. 4-27. HPLC-FL chromatogram of wine lees. 57 Fig. S-1. Calibration curves of formaldehdye, acetaldehyde, and propanal. Conditions: sample solvent = 0% acetonitrile 66 Fig. S-2. Calibration curves of butanal, pentanal, and hexanal. 67 Fig. S-3. Calibration curves of heptanal, octanal, and nonanal. 67 Fig. S-4. Calibration curves of formaldehdye, acetaldehyde, and propanal. Conditions: sample solvent = 50% acetonitrile 68 Fig. S-5. Calibration curves of butanal, pentanal, and hexanal.. 69 Fig. S-6. Calibration curves of heptanal, octanal, and nonanal.. 69 Fig. S-7. Calibration curves of formaldehdye, acetaldehyde, and propanal. Conditions: sample solvent = 100% acetonitrile 70 Fig. S-8. Calibration curves of butanal, pentanal, and hexanal. 71 Fig. S-9. Calibration curves of heptanal, octanal, and nonanal. 71 Fig. S-10. Investigation about rate constant of second order in 60% alcohol. 72 Fig. S-11. The relationship between peak area and derivatization time of DNPH reaction with acetaldehyde in DIW 72 Fig. S-12. Investigation about rate constant of first order in 20%, 40% alcohol, and 25 M acetaldehyde in DIW. 73 Fig. S-13. Calibration curve of Asp. 74 Fig. S-14. Calibration curve of Glu. 74 Fig. S-15. Calibration curve of Ser. 75 Fig. S-16. Calibration curve of Arg. 75 Fig. S-17. Calibration curve of Gly. 76 Fig. S-18. Calibration curve of Thr. 76 Fig. S-19. Calibration curve of Ala. 77 Fig. S-20. Calibration curve of GABA. 77 Fig. S-21. Calibration curve of Val. 78 Fig. S-22. Calibration curve of Phe. 78 表目錄 Table 2-1. Acetaldehyde levels in alcoholic beverages. 3 Table 2-2. Flavor characteristics of volatile, short chain aldehydes. 4 Table 2-3. Acetaldehyde levels produced by yeast. 7 Table 2-4. Comparison of different derivatization methods for the determination of aldehydes in water samples. 12 Table 2-5. Melting point and color of different DNPH derivatives. 13 Table 3-1. Properties of chemicals and reagents. 20 Table 3-2. Gradient elution program of HPLC-FL for determining amino acids. 24 Table 4-1. Calibration curves of nine aliphatic aldehydes. Sample solvent: 0% acetonitrile. 33 Table 4-2. Calibration curves of nine aliphatic aldehydes. Sample solvent: 50% acetonitrile. 33 Table 4-3. Calibration curves of nine aliphatic aldehydes. Sample solvent: 100% acetonitrile. 34 Table 4-4. Summary of k’ and DNPH concentration 44 Table 4-5. Rate constant of acetaldehyde derivatized with DNPH in DIW and 20%, 40%, 60% ethanol at room temperature. 45 Table 4-6. Equilibrium constant of acetaldehyde derivatized with DNPH in DIW and 20%, 40%, 60% ethanol. 48 Table 4-7. Concentration of acetaldehyde in real sample. 51 Table 4-8. Concentration of acetaldehyde in real samples. 53 Table 4-9. Concentration of amino acids in rice wines 56 Table 4-10. Concentration of amino acids in wine lees. 57

    Adachi, A.; Ozaki, H.; Kasuga, I.; Okano, T. Use of beer bran as an adsorbent for the removal of organic compounds from wastewater. J. Agric. Food Chem. 2006, 54, 6209–6211.
    Allen, C. f. . The identification of carbonyl compounds by use of 2, 4-dinitrophenylhydrazine. J. Am. Chem. Soc. 1930, 344, 2955–2959.
    Allen, C.; Richmond, J. H. Some limitations of 2, 4-dinitrophenylhydrazine as a reagent for carbonyl groups. J. Org. Chem. 1937, 2, 222–226.
    Antoine, F. R.; Wei, C. I.; Littell, R. C.; Marshall, M. R. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J. Agric. Food Chem. 1999, 47, 5100–5107.
    Bach, C.; Dauchy, X.; Severin, I.; Munoz, J.-F.; Etienne, S.; Chagnon, M.-C. Effect of temperature on the release of intentionally and non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: chemical analysis and potential toxicity. Food Chem. 2013, 139, 672–680.
    Bach, C.; Dauchy, X.; Severin, I.; Munoz, J. F.; Etienne, S.; Chagnon, M. C. Effect of sunlight exposure on the release of intentionally and/or non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: chemical analysis and in vitro toxicity. Food Chem. 2014, 162, 63–71.
    Barman, B. N. Accurate determination of aldehydes in amine catalysts or amines by 2,4-dinitrophenylhydrazine derivatization. J. Chromatogr. A 2014, 1327, 19–26.
    Chen, S.; Xu, Y.; Qian, M. C. Aroma characterization of Chinese rice wine by gas chromatography- olfactometry, chemical quantitative analysis, and aroma Reconstitution. J. Agric. Food Chem. 2013, 61, 11295–11302.
    Cordis, G. A.; Das, D. K.; Riedel, W. High-performance liquid chromatographic peak identification of 2,4-dinitrophenylhydrazine derivatives of lipid peroxidation aldehydes by photodiode array detection. J Chromatogr A 1998, 798 , 117–123.
    Deng, C.; Li, N.; Zhang, X. Development of headspace solid-phase microextraction with on-fiber derivatization for determination of hexanal and heptanal in Human Blood. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 813, 47–52.
    Ebeler, S. E.; Spaulding, R. S.; Jung, D. M. Characterization and measurement of aldehydes in wine. Abstr. Pap. Am. Chem. Soc. 1997, 213, 166–179.
    Eichelberger, J. W., Determination of carbonyl compounds in drinking water by dinitrophenylhydrazine derivatization and high performance liquid chromatography. EPA method 554 1992
    Elias, R. J.; Laurie, V. F.; Ebeler, S. E.; Wong, J. W.; Waterhouse, A. L. Analysis of selected carbonyl oxidation products in wine by liquid chromatography with diode array detection. Anal. Chim. Acta 2008, 626, 104–110.
    Gabrio, T. and A. Bertsch, Determination of carbonyl compounds in pool water with o-(2, 3, 4, 5, 6-pentafluorobenzyl) hydroxylamine hydrochloride and gas chromatographic–tandem mass spectrometric analysis. J. Chromatogr. A 2004, 1046, 293–296.
    Harris, D. C. Quantitative chemical analysis; Freeman: New York, 2010
    Ho, S. S. H.; Yu, J. Z. Determination of airborne carbonyls: comparison of a thermal desorption/GC method with the standard DNPH/HPLC method. Environ. Sci. Technol. 2004, 38, 862–870.
    Homann, N.; Jousimies-Somer, H.; Jokelainen, K.; Heine, R.; Salaspuro, M. High acetaldehyde levels in aaliva after ethanol consumption: methodological aspects and pathogenetic implications. Carcinogenesis 1997, 18, 1739–1743.
    Houlgate, P. R.; Dhingra, K. S.; Nash, S. J.; Evans, W. H. Determination of formaldehyde and acetaldehyde in mainstream cigarette smoke by high-performance liquid chromatography. Analyst 1989, 114 , 355.
    IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Personal Habits and Indoor Combustions. Volume 100 E. A review of human carcinogens. IARC monographs on the evaluation of carcinogenic risks to humans / World Health Organization, International Agency for Research on Cancer. 2012, pp 1–538.
    Jones, S. B.; Terry, C. M.; Lister, T. E.; Johnson, D. C. Determination of submicromolar concentrations of formaldehyde by liquid chromatography. Anal. Chem. 1999, 71, 4030–4033.
    Keunchkarian, S.; Reta, M.; Romero, L.; Castells, C. Effect of sample solvent on the chromatographic peak shape of analytes eluted under reversed-phase liquid chromatogaphic conditions. J. Chromatogr. A 2006, 1119, 20–28.
    Kieber, R. J.; Mopper, K. Determination of picomolar concentrations of carbonyl compounds in natural waters , including seawater , by liquid chromatography. Enivironmental, Sci. Technol. Res. 1990, 24, 1477–1481.
    Kiss, G.; Varga, B.; Varga Puchony, Z.; Gelencsér, A.; Krivácsy, Z.; Hlavay, J. Sample preparation of atmospheric aerosol for the determination of carbonyl compounds. Talanta 1999,48, 755–762.
    Kokkinidou, S.; Peterson, D. G. Identification of compounds that contribute to trigeminal burn in aqueous ethanol solutions. Food Chem. 2016, 211, 757–762.
    Komazaki, Y.; Hiratsuka, M.; Narita, Y.; Tanaka, S.; Fujita, T. The development of an automated continuous measurement system for the monitoring of HCHO and CH3CHO in the atmosphere by using an annular diffusion scrubber coupled to HPLC. Fresenius. J. Anal. Chem. 1999, 363, 686–695.
    Lachenmeier, D. W.; Kanteres, F.; Rehm, J. Carcinogenicity of acetaldehyde in alcoholic beverages: risk assessment outside ethanol metabolism. Addiction 2009, 104, 533–550.
    Lachenmeier, D. W.; Monakhova, Y. B. Short-term salivary acetaldehyde increase due to direct exposure to alcoholic beverages as an additional cancer risk factor beyond ethanol metabolism. J. Exp. Clin. Cancer Res. 2011, 30, 1–9.
    Lachenmeier, D. W.; Uebelacker, M. Quantitative determination of acetaldehyde in foods using automated digestion with simulated gastric fluid followed by headspace gas chromatography. J. Autom. Methods Manag. Chem. 2011, 2011, 907317.
    Li, H.; Jiao, A.; Xu, X.; Wu, C.; Wei, B.; Hu, X.; Jin, Z.; Tian, Y. Simultaneous saccharification and fermentation of broken rice: an enzymatic extrusion liquefaction pretreatment for Chinese rice wine production. Bioprocess Biosyst. Eng. 2013, 36, 1141–1148.
    Lili, L.; Xu, H.; Song, D.; Cui, Y.; Hu, S.; Zhang, G. Analysis of volatile aldehyde biomarkers in human blood by derivatization and dispersive liquid-liquid microextraction based on solidification of floating organic droplet method by high performance liquid chromatography. J. Chromatogr. A 2010, 1217, 2365–2370.
    Lin, Y. L.; Wang, P. Y.; Hsieh, L. L.; Ku, K. H.; Yeh, Y. T.; Wu, C. H. Determination of linear aliphatic aldehydes in heavy metal containing waters by high-performance liquid chromatography using 2,4-dinitrophenylhydrazine derivatization. J. Chromatogr. A 2009, 1216, 6377–6381.
    Liu, S.; Pilone, G. J. An overview of formation and roles of acetaldehyde in winemaking with emphasis on microbiological implications. Int. J. Food Sci. Technol. 2000, 35, 49–61.
    Luo, T.; Fan, W.; Xu, Y. Characterization of volatile and semi-volatile compounds in Chinese rice wines by headspace solid phase microextraction followed by gas chromatography-mass spectrometry. J. Inst. Brew. 2008, 114 (2), 172–179.
    Moreno, J.; Moreno-García, J.; López-Muñoz, B.; Mauricio, J. C.; García-Martínez, T. Use of a flor velum yeast for modulating colour, ethanol and major aroma compound contents in red wine. Food Chem. 2016, 213, 90–97.
    Nascimento, R. F.; Marques, J. C.; Lima Neto, B. S.; De Keukeleire, D.; Franco, D. W. Qualitative and quantitative high-performance liquid chromatographic analysis of aldehydes in Brazilian sugar cane spirits and other distilled alcoholic beverages. J. Chromatogr. A 1997, 782, 13–23.
    Nash, T. The colorimetric estimation of formaldehyde by means of the hantzsch reaction. Biochem. J. 1953, 55, 416–421.
    Oliva-Teles, M. T.; Paíga, P.; Delerue-Matos, C. M.; Alvim-Ferraz, M. C. M. Determination of free formaldehyde in foundry resins as its 2,4-dinitrophenylhydrazone by liquid chromatography. Anal. Chim. Acta, 2002, 467, 97–103.
    Paiano, V.; Bianchi, G.; Davoli, E.; Negri, E.; Fanelli, R.; Fattore, E. Risk assessment for the Italian population of acetaldehyde in alcoholic and non-alcoholic beverages. Food Chem. 2014, 154, 26–31.
    Park, H. M.; Eo, Y. W.; Cha, K. S.; Kim, Y. M.; Lee, K. B. Determination of free acetaldehyde in total blood for investigating the effect of aspartate on metabolism of alcohol in mice. J. Chromatogr. B Biomed. Appl. 1998, 719, 217–221.
    Pereira, V.; Pontes, M.; Câmara, J. S.; Marques, J. C. Simultaneous analysis of free amino acids and biogenic amines in honey and wine samples using in loop orthophthalaldeyde derivatization procedure. J. Chromatogr. A 2008, 1189, 435–443.
    Reda, A. A.; Schnelle-Kreis, J.; Orasche, J.; Abbaszade, G.; Lintelmann, J.; Arteaga-Salas, J. M.; Stengel, B.; Rabe, R.; Harndorf, H.; Sippula, O.; Streibel, T.; Zimmermann, R. Gas phase carbonyl compounds in ship emissions: differences between diesel fuel and heavy fuel oil operation. Atmos. Environ. 2015, 112, 370–380.
    S. Bart Jones, Christopher M. Terry; Tedd E. Lister, and; Johnson, D. C. Determination of Submicromolar Concentrations of Formaldehyde by Liquid Chromatography. 1999.
    Soufleros, E. H.; Bouloumpasi, E.; Tsarchopoulos, C.; Biliaderis, C. G. Primary amino acid profiles of Greek white wines and their use in classification according to variety, origin and vintage. Food Chem. 2003, 80, 261–273.
    Tabrizi, A. B.; Abdollahi, A. Dispersive liquid-liquid microextraction for the high performance liquid chromatographic determination of aldehydes in cigarette smoke and injectable formulations. J. Hazard. Mater. 2013, 254–255, 390–396.
    Vogel, M.; Büldt, a; Karst, U. Hydrazine reagents as derivatizing agents in environmental analysis--a critical Review. Fresenius. J. Anal. Chem. 2000, 366, 781–791.
    Wang, Q.;J. O’Reilly and J. Pawliszyn, Determination of low-molecular mass aldehydes by automated headspace solid-phase microextraction with in-fiber derivatization. J. Chromatogr. A 2005, 1071, 147-154.
    Webber, V.; Dutra, S. V.; Spinelli, F. R.; Carnieli, G. J.; Cardozo, A.; Vanderlinde, R. Effect of glutathione during bottle storage of sparkling wine. Food Chem. 2017, 216, 254–259.
    Wong, K. H.; Abdul Aziz, S.; Mohamed, S. Sensory aroma from maillard reaction of individual and combinations of amino acids with glucose in acidic conditions. Int. J. Food Sci. Technol. 2008, 43, 1512–1519.
    Xu, E.; Long, J.; Wu, Z.; Li, H.; Wang, F.; Xu, X.; Jin, Z.; Jiao, A. Characterization of volatile flavor compounds in Chinese rice wine fermented from enzymatic extruded rice. J. Food Sci. 2015, 80 , C1476–C1489.
    Yamauchi, M.; Masuda, S.; Kihara, M. Recycled Pots Using Sweet Potato Distillation Lees. Resour. Conserv. Recycl. 2006, 47, 183–194.
    Zhen, Y.; Wang, S. E.; Xiao, W.; Yuan, H.; Xiao, D. A fluorescent dosimeter for formaldehyde determination using the Nash reagent in silica gel beads. Microchim. Acta 2007, 159, 305–310.
    Zhou, X.; Huang, G.; Civerolo, K.; Schwab, J. Measurement of atmospheric hydroxyacetone, glycolaldehyde, and formaldehyde. Environ. Sci. Technol. 2009, 43, 2753–2759.
    林奕良. 水相中銅與胺基酸錯合物之光分解產物研究:醛的定量與分析. 碩士論文, 國立清華大學, 2005.
    業雲臺. Cu(II)對HPLC搭配DNPH管柱前衍生系統分析脂肪醛的影響與探討. 碩士論文, 國立清華大學, 2009.
    行政院環保署環境檢驗所,水中甲醛、乙醛和丙醛檢測方法-液相層析儀/紫外光偵測法.NIEA W782.50B 1997.
    行政院環保署環境檢驗所,空氣中氣態之醛類化合物檢驗方法-以DNPH衍生物之高效能液相層析測定法.NIEA A705.11C 2006.

    QR CODE