簡易檢索 / 詳目顯示

研究生: 洪邦彥
論文名稱: WOx/TiO2可見光應答光觸媒之研究
Photocatalysis of visible light responsed WOx/TiO2 Catalyst
指導教授: 黃世傑博士
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 83
中文關鍵詞: 二氧化鈦可見光亞甲基藍光觸媒
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以複合半導體的方式來合成可見光應答光觸媒,所添加的半導體為氧化鎢,採用的方法為溶膠凝膠法。隨著鎢的前驅物添加之不同,所合成出的觸媒計有WOx/TiO2及WO3/TiO2兩大類。藉由亞甲基藍脫色實驗來測試其分別在可見光和紫外光下之光催化活性,再配合所檢測之觸媒物性,來解釋其光催化行為。
    在物性分析方面,所合成出的兩類觸媒均為Anatase晶相,配合Scherrer,s formula計算出的晶粒大小、TEM照片所得到粒子大小及比表面積數據,發現對於WOx/TiO2來說,其隨著WOx的添加而有晶粒變小的現象,WO3/TiO2則是相反,其晶粒會逐漸成長。
    在光催化活性方面,所合成出的兩類觸媒均有可見光活性,但均有其最適值,WOx/TiO2發生在3%的WOx複合,WO3/TiO2則是6%WO3摻雜。對於以紫外光為光源來說,WOx/TiO2觸媒於紫外光下其活性不如自行合成的純TiO2,推測是因WOx的添加行成一個新不純物 能階,此能階會成為新的電子電洞結合中心,造成光催化效率的下降。WO3/TiO2則是添加適量的WO3有助於提升其紫外光活性,但有其最適值,發生在4%WO3複合的情形。


    目錄 第一章 緒論...............................................1 1.1 研究動機...............................................1 1.2 研究目的...............................................2 第二章 文獻回顧...........................................3 2.1 光催化.................................................3 2.2 二氧化鈦之簡介.........................................5 2.2.1 二氧化鈦之構造與特性........................5 2.2.2 二氧化鈦光催化之機制........................7 2.3 二氧化鈦之製備.........................................9 2.3.1 溶膠凝膠法..................................9 2.3.2 微乳液法...................................11 2.3.3 水熱法.....................................14 2.4 二氧化鈦光催化之改良..................................15 2.4.1 光催化活性之提升...........................15 2.4.1.1 複合半導體...................15 2.4.1.2 添加貴金屬....................18 2.4.1.3 過渡金屬離子之負載............20 2.4.2 可見光應答之提升...........................22 2.4.2.1 染料之添加...................22 2.4.2.2 過渡金屬之摻合................24 2.4.2.3 複合半導體....................27 2.4.2.4 離子植入法....................29 2.5 亞甲基藍之性質........................................31 2.6 亞甲基藍之動力學......................................34 第三章 材料及方法.........................................35 3.1 材料..................................................35 3.1.1 實驗藥品...................................35 3.1.2 實驗儀器及設備.............................36 3.2 實驗方法..............................................37 3.2.1 觸媒製備...................................37 3.2.1.1 WOx/TiO2的製備.................37 3.2.1.2 WO3/TiO2的製備.................38 3.2.2 物性分析...................................39 3.2.2.1 紫外光-可見光吸收光譜(UV-Vis).39 3.2.2.2 X光粉末繞射(XRD).............39 3.2.2.3 穿透式電子顯微鏡(TEM).........40 3.2.2.4 比表面積儀.....................40 3.2.3 光催化測試.................................41 3.2.3.1 吸附實驗........................41 3.2.3.2 光解實驗........................41 3.2.3.3 可見光光催化實驗................42 3.2.3.4 紫外光光催化實驗................43 蒂四章 結果與討論.........................................47 4.1 物性分析..............................................47 4.1.1 紫外光-可見光吸收分析......................47 4.1.2 X光粉末繞射分析.........................48 4.1.3 電子顯微鏡分析.............................49 4.1.4 比表面積分析...............................50 4.2 光催化活性檢測........................................51 4.2.1 背景實驗...................................51 4.2.1.1 吸附實驗........................51 4.2.1.2 直接光解實驗....................52 4.2.2 可見光活性測試.............................52 4.2.2.1 WOx/TiO2可見光活性測試.........53 4.2.2.2 WO3/TiO2可見光活性測試.........54 4.2.3 紫外光活性測試.............................55 4.2.3.1 WOx/TiO2紫外光活性測試.........55 4.2.3.2 WO3/TiO2紫外光活性測試.........56 第五章 結論...............................................71 參考文獻..................................................73 附錄......................................................78 圖目錄 圖2.1 光催化原理示意圖.....................................4 圖2.2 光催化與其他方法處理VOCs之年成本比較.................4 圖2.3 二氧化鈦相圖.........................................6 圖2.4 二氧化鈦晶體結構圖(a) Rutile (b) Anatase.............6 圖2.5 二氧化鈦光催化反應機制之動力學.......................8 圖2.6 微乳液法合成奈米粒子................................13 圖2.7 微乳液法合成二氧化鈦................................13 圖2.8 複合半導體經激發後之電子電洞對轉移能階圖............17 圖2.9 WO3/TiO2之能階圖....................................17 圖2.10 TiO2及Pt/TiO2觸媒上之Ti3+隨UV光照射時間關係圖......19 圖2.11 Au/TiO2系統之電子電洞傳遞圖........................19 圖2.12 過渡金屬離子負載於TiO2上之電子電洞對傳遞圖.........21 圖2.13 金屬離子摻入TiO2之氧化還原能力圖...................21 圖2.14 有添加染料的TiO2之電子傳遞圖.......................23 圖2.15 光敏化TiO2之UV-Vis圖...............................23 圖2.16 無摻雜、摻雜5及10mol%鉛的二氧化鈦之UV-Vis圖........25 圖2.17 粗估能隙差與摻入鉛的量之關係圖.....................26 圖2.18 (a)PVG (b)TiO2/PVG (c) TiO2/V/PVG (d) V/TiO2/PVG之 UV-Vis圖..................................................26 圖2.19 純TiO2及WOX-TiO2之UV-Vis圖.........................28 圖2.20 亞甲基藍經WOX-TiO2光催化後之濃度變化隨時間關係圖...28 圖2.21 (a) 0 (b) 2.2 (c) 6.6 (d) 13(單位:10-7mol/g)之Cr離子以離子植入法摻合入TiO2之UV-Vis圖........................30 圖2.22 (a)0 (b/) 16 (c/) 200 (d/)1000 (e/) 2000(單位:10-7mol/g)之Cr離子以化學方法摻合入TiO2之UV-Vis圖............30 圖2.23 亞甲基藍之吸收光譜圖...............................32 圖2.24 亞甲基藍的665nm吸收度與濃度之關係圖................33 圖3.1 實驗流程圖..........................................44 圖3.2 可見光實驗所用反應器示意圖..........................45 圖3.3 光源箱之光源波長範圍圖..............................45 圖3.4 紫外光濾片之穿透光譜圖..............................46 圖3.5 紫外光實驗所用反應器示意圖..........................46 圖4.1 WOx/TiO2之UV-Vis圖..................................58 圖4.2 WO3/TiO2之UV-Vis圖..................................58 圖4.3 JCPDS之TiO2的Anatase phase標準圖譜..................59 圖4.4 WOx/TiO2之XRD圖.....................................59 圖4.5 WO3/TiO2之XRD圖.....................................60 圖4.6 1.5%WOx/TiO2之TEM圖.................................60 圖4.7 3%WOx/TiO2之TEM圖...................................60 圖4.8 4.5%WOx/TiO2之TEM圖.................................61 圖4.9 6%WOx/TiO2之TEM圖...................................61 圖4.10 TiO2-1之TEM圖......................................61 圖4.11 TiO2-2之TEM圖......................................61 圖4.12 2%WO3/TiO2之TEM圖..................................62 圖4.13 4%WO3/TiO2之TEM圖..................................62 圖4.14 亞甲基藍之濃度與吸收度(663nm)之關係圖............62 圖4.15 WOx/TiO2之吸附量對時間關係圖.......................63 圖4.16 WO3/TiO2之吸附量對時間關係圖.......................63 圖4.17 亞甲基藍可見光之光解實驗圖.........................64 圖4.18 亞甲基藍紫外光之光解實驗圖.........................64 圖4.19 WOx/TiO2於可見光下之-ln(1-x) vs. t圖...............65 圖4.20 WO3/TiO2於可見光下之-ln(1-x) vs. t圖...............65 圖4.21 WOx/TiO2於紫外光下之-ln(1-x) vs. t圖...............66 圖4.22 添加WOx後之WOx/TiO2所形成新不純物能階圖............66 圖4.23 WO3/TiO2於紫外光下之-ln(1-x) vs. t圖...............67 表目錄 表4.1 各觸媒之晶粒大小一覽表(by XRD)....................68 表4.2 各觸媒之晶粒大小一覽表(by TEM)....................68 表4.3 各觸媒之比表面積一覽表..............................68 表4.4 各觸媒與亞甲基藍達吸附平衡時間一覽表................69 表4.5 WOx/TiO2之可見光一次反應速率常數一覽表..............69 表4.6 WO3/TiO2之可見光一次反應速率常數一覽表..............69 表4.7 WOx/TiO2之紫外光一次反應速率常數一覽表..............70 表4.8 WO3/TiO2之紫外光一次反應速率常數一覽表..............70

    Anpo, M., Takeuchi, M., Ikeue, K. and Dohshi, S. Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation. The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti/zeolite catalysts. Current Opinion in Solid State & Materials Science (2002), 6(5), 381-388

    Anpo, M. and Takeuchi, M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. Journal of Catalysis (2003), 216(1-2), 505-516

    Chhabra, V., Pillai, V., Mishra, B. K., Morrone, A. and Shah, D. O. Synthesis, Characterization, and Properties of Microemulsion Mediated Nanophase TiO2 Particles. Langmuir (1995), 11(9), 3307-11

    Cho, Y., Choi, W., Lee, C. H., Hyeon, T. and Lee, H. I. Visible light-induced degradation of carbon tetrachloride on dye-sensitized TiO2. Environmental Science and Technology (2001), 35(5), 966-970

    Choi, W., Termin, A. and Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. Journal of Physical Chemistry (1994), 98(51), 13669-79

    Doong, R. A., Chen, C. H., Maithreepala, R. A. and Chang, S. M. The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water Research (2001), 35(12), 2873-2880

    Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews (Washington, D. C.) (1995), 95(1), 69-96

    Iliev, V., Tomova, D., Bilyarska, L.; Prahov, L. and Petrov, L. Phthalocyanine modified TiO2 or WO3-catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light. Journal of Photochemistry and Photobiology, A: Chemistry (2003), 159(3), 281-287

    Inagaki, M., Nakazawa, Y., Hirano, M., Kobayashi, Y. and Toyoda, M. Preparation of stable anatase-type TiO2 and its photocatalytic performance. International Journal of Inorganic Materials (2001), 3(7), 809-811

    Kang, M. Preparation of TiO2 photocatalyst film and its catalytic performance for 1,1'-dimethyl-4,4'-bipyridinium dichloride decomposition. Applied Catalysis, B: Environmental (2002), 37(3), 187-196

    Klosek, S. and Raftery, D. Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol. Journal of Physical Chemistry B (2001), 105(14), 2815-2819

    Kumar, K. N. P., Keizer, K., Burggraaf, A. J.; Okubo, T., Nagamoto, H. and Morooka, S. Densification of nanostructured titania assisted by a phase transformation. Nature (London, United Kingdom) (1992), 358(6381), 48-51

    Lettmann, C., Hinrichs, H. and Maier, W. F. Combinatorial discovery of new photocatalysts for water purification with visible light. Angewandte Chemie, International Edition (2001), 40(17), 3160-3164

    Levin, E. M. and McMurdie, H. F. Phase diagrams for ceramists(figures 4150-4999), The American ceramic society, Inc. 1975, P76

    Li, X. Z., Li, F. B., Yang, C. L. and Ge, W. K. Photocatalytic activity of WOx-TiO2 under visible light irradiation. Journal of Photochemistry and Photobiology, A: Chemistry (2001), 141(2-3), 209-217

    Linsebigler, A. L., Lu, G. and Yates, J. T. Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews (Washington, D. C.) (1995), 95(3), 735-58

    Lyons, C. E., Turchi, C. and Gratson, D. Solving widespread low-concentration VOC air pollution problem:Gas photocatalytic oxidation answers the needs of many small businesses, The 88th Air&Waste Management Association, Annual Meeting, June 1995

    Martin, C., Solana, G., Rives, V., Marci, G., Palmisano, L. and Sclafani, A. Physicochemical properties of WO3/TiO2 systems employed for 4-nitrophenol photodegradation in aqueous medium. Catalysis Letters (1997), Volume Date 1997, 49(3,4), 235-243

    Mills, A. and Le H. S. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology, A: Chemistry (1997), 108(1), 1-35

    Rahman, M. M., Krishna, K. M., Soga, T., Jimbo, T. and Umeno, M. Optical properties and X-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films. Journal of Physics and Chemistry of Solids (1999), Volume Date 1999, 60(2), 201-210

    Rajeshwar, K. Photoelectrochemistry and the environment. Journal of Applied Electrochemistry (1995), 25(12), 1067-82.

    Rampaul, A., Parkin, I. P., O'Neill, S. A., DeSouza, J., Mills, A. and Elliott, N. Titania and tungsten doped titania thin films on glass; active photocatalysts. Polyhedron (2003), 22(1), 35-44

    Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E. and Hidaka, H. Exploiting the interparticle electron transfer process in the photocatalyzed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology, A: Chemistry (1995), 85(3), 247-55

    Sjoeblom, J., Lindberg, R. and Friberg, S. E. Microemulsions - phase equilibria characterization, structures, applications and chemical reactions. Advances in Colloid and Interface Science (1996), 65, 125-287

    Sonawane, R. S., Hegde, S. G. and Dongare, M. K. Preparation of titanium(IV) oxide thin film photocatalyst by sol-gel dip coating. Materials Chemistry and Physics (2002), 77(3), 744-750

    Sopajaree, K., Qasim, S. A., Basak, S. and Rajeshwar, K. An integrated flow reactor-membrane filtration system for heterogeneous photocatalysis. Part I: experiments and modelling of a batch-recirculated photoreactor. Journal of Applied Electrochemistry (1999), 29(5), 533-539.

    Takahashi, T., Nakabayashi, H., Yamada, N. and Tanabe, J. Photocatalytic properties of TiO2/WO3 bilayers deposited by reactive sputtering. Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films (2003), 21(4), 1409-1413

    Tang, H., Prasad, K., Sanilines, R., Schmid, P. E. and Levy, F. Electrical and optical properties of TiO2 anatase thin films. Journal of Applied Physics (1994), 75(4), 2042-7

    Wang, C. Y., Liu, C. Y., Zheng, X., Chen, J. and Shen, T. The surface chemistry of hybrid nanometer-sized particles. I. Photochemical deposition of gold on ultrafine TiO2 particles. Colloids and Surfaces, A: Physicochemical and Engineering Aspects (1998), 131(1-3), 271-280

    Wang, C. Y., Boettcher, C., Bahnemann, D. W. and Dohrmann, J. K. A comparative study of nanometer sized Fe(III)-doped TiO2 photocatalysts: synthesis, characterization and activity. Journal of Materials Chemistry (2003), 13(9), 2322-2329

    Yasumori, A., Ishizu, K., Hayashi, S. and Okada, K. Preparation of a TiO2 based multiple layer thin film photocatalyst. Journal of Materials Chemistry (1998), 8(11), 2521-2524

    Young, T. K., Kang. Y. S., Wan, I. L., Guang, J. C. and Young. R. D. Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction. Journal of Catalysis (2000), 191(1), 192-199

    Yu, J. C., Tang, H. Y., Yu, J., Chan, H. C., Zhang, L., Xie, Y., Wang, H. and Wong, S. P. Bactericidal and photocatalytic activities of TiO2 thin films prepared by sol-gel and reverse micelle methods. Journal of Photochemistry and Photobiology, A: Chemistry (2002), 153(1-3), 211-219

    Zhao, G., Kozuka, H., Lin, H. and Yoko, T. Sol-gel preparation of Tix-1VxO2 solid solution film electrodes with conspicuous photoresponse in the visible region. Thin solid films, (1999), 339(1-2), 123-128

    林彥志, 1999, TiO2光觸媒電極分解亞甲基藍之變因探討及動力學研究, 國立台灣大學化學工程研究所碩士論文

    陳富亮, 2003, 最新奈米光觸媒應用技術, 普林斯頓國際有限公司, 初版

    魏國修, 1997, 利用TiO2薄膜光電催化亞甲基藍去色之反應動力學探討, 國立台灣大學化學工程研究所碩士論文

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE