簡易檢索 / 詳目顯示

研究生: 張光威
Guang-Wei Chang
論文名稱: Birefringence of Crystalline Block Copolymers Templated by Crystallization
結晶行為對半結晶性團聯共聚物雙折射之調控
指導教授: 何榮銘
Rong-Ming Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 104
中文關鍵詞: 雙折射結晶團聯共聚物
外文關鍵詞: birefringence, crystallization, block copolymer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A series of semicrystalline block copolymers, poly(4-vinylpyridine) -block-poly(ε-caprolactone) (P4VP-PCL), with lamellar microstructure have been synthesized. Owing to the vitrified P4VP microdomains and strongly segregated microphase separation, the crystallization of the PCL blocks in P4VP-PCL can be carried out under nanoscale confinement at various temperatures. Specific PCL crystalline orientation can be achieved by confined crystallization under the vitrified P4VP microdomains. Considering the practical applications, large-scale oriented microphase-separated microdomains is required to provide well-defined structure for anisotropic macroscopic properties. A novel orientation process combining rimming coating and shearing was employed to achieve the large-scale orientation for microphase-separated microdomains.
    Simultaneous SAXS and WAXD experiments are carried out to examine the anisotropic properties of microphase separated microstructure and corresponding crystalline orientation. The scattering results suggested that the crystalline chains are normal to microphase-separated lamellar microdomains at various temperatures from -10℃ to 40℃ because of the nanoscale confinement for crystallization; namely, a perpendicular orientation can be achieved. As evidenced by DSC measurements, the confined size effect varying from different molecular-weight samples is significant on confined crystallization. Interestingly, as observed by polarized light microscopy, uniform birefringence pattern can be identified in the oriented block copolymer thin films after crystallization.
    The birefringence of the crystalline block copolymer thin films was examined as a function of crystallization temperature. Real-time birefringence measurement of the thin-film samples with the crystallization process was obtained by using a polarizer-sample-polarizer system. The enhancement on the birefringence of the block copolymer thin films corresponded well with the increase on the crystallinity of confined crystallization. We speculate that the growth of oriented crystallites with perpendicular morphology is attributed to the confinement effect. As a result, the birefringence of the thin-film samples increased with the crystallinity developing within the confined microdomains because of the specific anisotropic character.
    Our results indicated that significant birefringence variation in the semicrystalline P4VP-PCL block copolymers can be templated by controlling the orientation and crystallinity of the crystalline microdomains due to the formation of preferential crystalline orientation. Also, it is noted that this birefringence variation is a reversible process by simply controlling the annealing temperature. Consequently, this block copolymer thin film can provide a temperature-controlled birefringence film and also a controllable birefringence film with the crystallization time because of the unique anisotropic crystallites of confined crystallization.


    Abstract I Contents III List of Tables V List of Figures VI Chapter 1 Introduction 1 1.1 Self-Assembly 1 1.2 Self-assembly of Block Copolymers 2 1.3 Crystallization of Semicrystalline Diblock Copolymers 3 1.4 Polymeric Crystallites under Confinement 5 1.4.1 Crystalline Orientation under Confinement 6 1.4.2 Crystallization of P4VP-PCL Block Copolymers 7 1.5 Large-scale Orientation of BCP Microdomains 8 1.5.1 Shear-Induced Orientation 9 1.6 Optical Birefringence 11 1.6.1 Definition of Birefringence 11 1.6.2 Isotropic and Anisotropic 12 1.6.3 Optical Properties of Anisotropic 13 1.6.4 Birefringence in Crystalline Polymers 19 1.6.5 Birefringence in Ordered Block Copolymers 21 Chapter 2 Objectives 38 Chapter 3 Experimental 40 3.1 Instrumentation 40 3.2 Synthesis of P4VP-b-PCL 40 3.2.1 Preparation of Benzyl Ester End-functionalized PCL-OHs 40 3.2.2 Preparation of PCL Macroinitators, PCL-Cls 40 3.2.3 Synthesis of PCL-P4VP Diblock Copolymers 41 3.3 Bulk Sample Preparation of Diblock Copolymers 42 3.4 Alignment (Mechanical Shear Device) 42 3.5 Transmission Electron Microscopy (TEM) 43 3.6 Synchrotron X-ray Experiments 43 3.7 Differential Scanning Calorimetry (DSC) 44 3.8 Polarizing Optical Microscopic (POM) 45 3.9 Birefringence Measurement 45 Chapter 4 Results and Discussion 54 4.1 Thermal Behavior of P4VP-PCL 54 4.2 Lamellar Morphologies of P4VP-PCL with Various Molecular Weights 54 4.3 Oriented Lamellar Morphology 55 4.4 Crystalline Orientation under Confinement 56 4.5 Crystallization of P4VP-PCL 58 4.6 Specific Optical Behavior under Nanoscale Confinement 58 4.6.1 Birefringence in Oriented Block Copolymers 58 4.6.2 Correspondence of Crystallization and Birefringence 59 Chapter 5 Conclusions 95 Chapter 6 Future Work 97 Chapter 7 References 99

    (1) Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
    (2) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    (3) Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
    (4) Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
    (5) Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
    (6) Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
    (7) (a) Bate, F. S.; Fredrickson, G. H.; Annu. Rev. Phys. Chem. 1990, 41, 525.; (b)Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    (8) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
    (9) Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
    (10) Lotz, B.; Kovacs, A. J. ACS Polym. Prepr. 1969, 10, 820.
    (11)Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995,
    (12)Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yeh, F.; Hashimoto, T. Phy. Rev. B. 1999, 60, 10022.
    (13)Khandpur, A. K.; Macosko, C. W.; Bates, F. S. J. Polym. Sci., Part B: Polym. Phys. 1995, 33, 247.
    (14)Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
    (15)Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
    (16)Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, G.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
    (17)Loo, Y. L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120.
    (18)Huang, P.; Zhu, L.; Guo, Y.; Ge, Q.; Jing, A. J.; Chen, W. Y.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I.; Macromolecules 2004, 37, 3689.
    (19)Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
    (20)Hillymer, M. A.; Bates, F. S. Macromol. Symp. 1997, 117, 121.
    (21)Loo, Y. -L.; Register, R. A.; Ryan, A. J.; Dee, G. T. Macromolecules 2001, 34, 8968.
    (22)Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    (23)L. Zhu, P. Huang , S. Z. D.Cheng, Q Ge, R. P. Quirk, E. L. Thomas, B. Lotz, J. C. Wittmann, B. S. Hsiao, F. Yeh, and L. Liu. Phys. Rev. Lett. 2001, 86, 6030.
    (24)L. Zhu, P. Huang, W. Y Chen, Q. Ge, R. P. Quirk, S. Z .D Cheng, E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu. Macromolecules 2002, 35, 3553
    (25) L. Zhu, S. Z .D Cheng, Q. Ge, R. P. E. L. Thomas, B. Lotz, B. S. Hsiao, F. Yeh, L. Liu. Adv. Mater. 2002, 14, 31.
    (26)P. Huang, L. Zhu, S. Z. D. Cheng, Q. Ge, R. P. Quirk, E. L. Thomas, B.
    (27) J. P. A. Fairclough, S. M. Mai, W. Bras, L. Messe, S. C. Turner, A. J.Gleeson, C. Booth, I. W. Hamley, A. J. Ryan. J. Chem. Phys. 2001, 114, 5425.
    (28)P. Rangarajan, R.A. Register, and L. J. Fetters, Macromolecules 1993, 26, 4640.
    (29)P. Rangarajan, R.A. Register, D.H. Adamson, L. J. Fetters, W. Bras, S. Naylor, and A. J. Ryan, Macromolecules 1995, 28, 1422.
    (30)A. J. Ryan, I. W. Hamley, W. Bras, and F. S. bates, Macromolecules 1995, 28, 3860.
    (31)V. Balsamo, G. Gil, C. Urbina de Navarro, I. W. Hamley, F. von Gyldenfldt, V. Abetz and E. Canizales, Macromolecules 2003, 36, 4515.
    (32)I. W. Hamley, J. P. A. Fairclough, F. S. bates, and A. J. Ryan, polymer 1998, 39, 1429.
    (33)T. Shiomi, H. Tsukuda, H. Takeshida, K. Takenada, and Y. Tezuka, polymer 2001, 42, 4997.
    .(34)Y.-L. Loo, R.A. Register, and A. J. Ryan, phys. Rev. Lett. 2000, 84, 4120.
    (35) I. W. Hamley, J. P. A. Fairclough, N. J. Terrill, A. J. Ryan, P. M. Lipic, F. S. bates, and E. Towns-Andrews, Macromolecules 1996, 29, 8835.
    (36) I. W. Hamley, J. P. A. Fairclough, A. J. Ryan, P. M. Lipic, F. S. bates, and E. Towns-Andrews, polymer 1996, 37, 4425.
    (37)D. J. Quiram, R.A. Register, G. R. Marchand, and A. J. Ryan, Macromolecules 1997, 30, 8338.
    (38) Y.-L. Loo, R.A. Register, D.H. Adamson, Macromolecules 2000, 33, 8361.
    (39)S.-M. Mai, J. P. A. Fairclough, K.Viras, P. A. Gorry, I. W. Hamley, A. J. Ryan, and C. Booth, Macromolecules 1997, 30, 8392.
    (40)M. Gervais, and B. Gallot, Makromol. Chem. 1973, 25, 5030.
    (41) A. J. Ryan, J. P. A. Fairclough, I. W. Hamley, S.-M. Mai, and C. Booth, Macromolecules 1997, 30, 1723.
    (42)K. C. Douzinas, and R. E. Cohen, Macromolecules 1992, 25, 5030.
    (43) D. J. Quiram, R.A. Register, and G. R.Marchand, Macromolecules 1997, 30, 4551
    (44)Xu, J.-T.; Fairclough, J. P. A.; Mai, S.-M.; Ryan, A. J.; Chaibundit, C. Macromolecules 2002, 35, 6937.
    (45)Loo, Y. -L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
    (46)P. Huang, L. Zhu, S. Z. D. Cheng, Q. Ge, R. P. Quirk, E. L. Thomas, B. Lotz, B. S. Hsiao, L. Liu, and F. Yeh, Macromolecules 2001, 34, 6649
    (47)Zhu, L.; Cheng, S. Z-D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S,; Yeh, F.; Lotz, B. Polymer 2001, 42, 5829.
    (48) Sun, Y.-S.; Chung, T.-M.; Li, Y.-J.; Ho, R.-M.; Ko, B.-T.; Jeng, U.-S.; Lotz, B. “Crystalline polymers in nanoscale 1D spatial confinement” Macromolecules 2006, 39, 5782.
    (49)S. S. Henkee, E. L. Thomas, L. J. Fetters, Mater. Sci. 1988, 23, 1685.
    (50)A. Skoulios. J. Polym. Sci. Polym. Symp. 1977, 58, 369.
    (51)G. Hadziioannou, A. Mathis, A. Skoulios. Colloid Polym. Sci.1979, 257, 136.
    (52) G. Hadziioannou, A. Mathis,and A. Skoulios. Colloid Polym. Sci.1979, 257, 15.
    (53)S. Okamoto, K. Saijo,and T. Hashimoto. Macromolecules 1994, 27, 5547.
    (54)G. H. Fredrickson. J. Rheol. 1994, 38, 1045.
    (55)A. N. Morozov, J. Fraaije, GEM. Phys. Rev. E 2002, 65, 031803.
    (56)Z. R. Chen, and J. A. Kornfield, Polymer 1998, 39, 4679.
    (57)I. Hamley. J. Phys: Condens Matter 2001, 13, R643.
    (58)Gupta, V. K.; Krishnamoorti, R.; Kornfield, J. A.; Smith, S. D. Macromolecules, Note to appear in Feb 12 issue.
    (59)Gupta, V. K.; Krishnamoorti, R.; Kornfield, J. A.; Smith, S. D. Macromolecules 1995, 28, 4464.
    (60)Kornfield, J. A.; Gupta, V. K.; Krishnamoorti, R.; Smith, S. D. Macromolecules 1996, 29, 875.
    (61)F. A. Morrison, G. L. Bourvellec, and H. H. Winter . J. Appl. Polym. Sci. 1987, 33, 1585.
    (62)K. A. Koppi, M. Tirrell, F. S. Bates, K. Almdal, K. Mortensen. J. Rheol. 1994, 38, 999.
    (63)V. K. Gupta, R. Krishnamoorti, J. AKornfield, andS. D. Smith, Macromolecules 1995 ,28, 4464.
    (64)http://www.olympusmicro.com/primer/lightandcolor/birefringenceintro.html
    (65)http://micro.magnet.fsu.edu/primer/lightandcolor/birefringencehome.html
    (66)http://en.wikipedia.org/wiki/Birefringence
    (67) Englewood Cliffs, NJ/Prentice-Hall/c1992 “Dipole moments and birefringence of polymers”
    (68) Eder, G.; Janeschitz-Kriegl, H.; Liedauer, S. Prog. Polym. Sci. 1990, 15, 629.
    (69) Jerschow, P.; Janeschitz-Kriegl, H. Int. Polym. Proc. 1997, 1, 72.
    (70) Peterlin, A. In Flow Induced Crystallization; Miller, R. L., Ed.; Gordon: New York, 1979.
    (71) Larsen, A.; Hande, O. Colloid Polym. Sci. 1993, 271, 277.
    (72) Stein, R. S. Newer Methods in Polymer Characterization; Wiley-Interscience: New York, 1964.
    (73) Kornfield, J. A.; Lucia, F. B.; Gough, T. J. Synchrotron Rad. 2008, 15, 185.
    (74) Rossignol, J. M.; Sequela, R.; Rietsch, F.; Dupuis-Lallemand J. Polym. Sci., Polym. Phys. Ed. 1989, 27, 527.
    (75) Chai, C. K.; Creissel, J. Randrianantoandro Polymer 1999, 40, 4431.
    (76) Kubo, H.; Okamoto, M.; Kotaka, T. Polymer 1998, 39, 4827; 1998, 39, 501.
    (77) Ryu, D. S.; Inoue, T.; Osaki, K. Polymer 1998, 39, 2515.
    (78) Kumaraswamy, G.; Issaian, A. M.; Kornfield J. A. Macromolecules 1999, 32, 7537.
    (79)G. Floudas, L. Hilliou, D. Lellinger, and I. Alig, Macromolecules 2000, 33,6466.
    (80)T. P. Lodge, andG. H. Fredrickson, Macromolecules 1992, 25,5643.
    (81)M. Born, E. Wolf, Pergamon Press: New York, 1959; pp 702-705.
    (82)K. Hongladarom, V. M. Ugaz, D. K. Cinader, W. R.Burghardt, J. P. Quintana, B. S. Hsiao, M. D. Dadmun, W. A. Hamilton, P. D. Butler, Macromolecules 1996, 29,5346.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE