簡易檢索 / 詳目顯示

研究生: 王偉一
Wang, Wei Yi
論文名稱: A Fast Local Search Algorithm for Virtual Network Embedding
一個虛擬網路映射的快速區域搜尋演算法
指導教授: 張正尚
Chang, Cheng Shang
口試委員: 李端興
Lee, Duan Shin
黃之浩
Huang, Chih Hao
林華君
Lin, Hwa Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 38
中文關鍵詞: 虛擬網路映射網路虛擬化軟體定義網路
外文關鍵詞: Virtual Network Embedding, Network Virtualization, Software Defined Network
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 網路虛擬化是為了提供下世代網路服務的一個新興題目。它透過切割原本的網際網路服務供應商的角色,把底層網路設備的管理交給基礎設備供應商(InP),把頂層提供使用者服務的任務交給服務供應商(SP),這使得資源利用和使用者分割的概念更加鮮明。
      訂價的問題激發了我們的想法,所以我們設定我們的目標函數就是虛擬網路的價格。我們主要提出一個相對於精確解較快的演算法,來解決虛擬網路映射的問題。這演算法叫做「排列互換法」。我們利用它在可接受的時間內(幾秒鐘)來尋找一個區域最佳解。排列互換法先用虛擬結點的排列組合來表示一個虛擬網路的映射,再兩兩結點互換排列使得目標函數的值能疊代的下降至區域最佳解。
      在排列互換法中,我們比較四種方法:最適配置-貪婪選擇、最適配置-隨機選擇、混合隨機配置-貪婪選擇和混合隨機配置-隨機選擇。我們在四種底層網路上面做模擬:Fat-Tree、BCube、VL2和Cogent,比較它們的效能和效率。
      我們實驗結果是沒有隨機變數的演算法是最差的,而且貪婪選擇對效能的提升比混合隨機配置來得低。因此要兼顧效能和效率,混合隨機配置-隨機選擇會是最好的演算法。


    Network virtualization is a popular topic about providing next-generation Internet
    services. It primarily virtualizes the resources managed by the Infrastructure Provider
    (InP) and the demands claimed by the Service Provider (SP) to make the concepts of
    the resource allocation and the user isolation to be more clearly.
    We inspired by the insight of the pricing problem, so that we set the price of virtual
    requests on the objective function. Then we focuses on a relatively fast algorithm for
    solving the VNE than exact solutions. We propose the Permutation Swap Method (PSM)
    to nd a local optimal solution in a reasonable computation time (few seconds). The
    PSM represents a network mapping by a node permutation, and it iteratively swaps two
    nodes' permutation to obtain a lower objective value until reaching a local minimum.
    We apply four different algorithms: Best Fit with Greedy Selection (BF-GS), Best Fit
    with Random Selection (BF-RS), Mixed Random Fit with Greedy Selection (MRF-GS)
    and Mixed Random Fit with Random Selection (MRF-RS) in the PSM, and we conduct
    experiments to compare the performance and efficiency of these algorithms in three data
    center networks: Fat-Tree, BCube, VL2 and an inter-data-center network: Cogent.
    The experimental results are that the algorithm without random factor has the worst
    performance, and the performance gain by using the greedy selection is less than the one
    by using the mixed random t solution. Hence to take into account both the performance
    and efficiency, the MRF-RS method is the best algorithm.

    Contents 1 List of Figures 4 1 Introduction 5 1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Problem De nition 8 2.1 Virtual Network model and Substrate Network model . . . . . . . . . . . 9 2.2 Node Mapping and Edge Mapping Functions . . . . . . . . . . . . . . . . 9 2.3 Two Types of Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 An Overview of Our Solution . . . . . . . . . . . . . . . . . . . . . . . . 10 3 The Permutation Swap Method 12 3.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1.1 Merging Cost Functions and Mapping Functions . . . . . . . . . . 13 3.2 Virtual Network Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1 Finding the Node Mapping . . . . . . . . . . . . . . . . . . . . . . 13 3.2.2 Finding the Edge Mapping . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Permutation Swap Method . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.1 Bipartite Graph representation . . . . . . . . . . . . . . . . . . . 14 3.3.2 Pairwise Swapping . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3.3 Two types of Selection Strategies . . . . . . . . . . . . . . . . . . 16 4 Further Improvement 20 4.1 Objective Function Gain Formulation . . . . . . . . . . . . . . . . . . . . 20 4.2 Mixed Random Fit method . . . . . . . . . . . . . . . . . . . . . . . . . 22 5 Numerical Results 23 5.1 Impact of the Number of Failed Swappings in the Random Selection . . . 24 5.2 Impact of the Number of Random Fit in the Mixed Random Fit . . . . . 27 5.3 Comparison of four methods . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Conclusion 36

    [1] A. Khan, A. Zugenmaier, D. Jurca, and W. Kellerer, \Network virtualization: a
    hypervisor for the internet?" IEEE Communications Magazine, vol. 50, no. 1, pp.
    136{143, 2012.
    [2] A. Wang, M. Iyer, R. Dutta, G. N. Rouskas, and I. Baldine, \Network virtualization:
    Technologies, perspectives, and frontiers," Journal of Lightwave Technology, vol. 31,
    no. 4, pp. 523{537, 2013.
    [3] J. Lischka and H. Karl, \A virtual network mapping algorithm based on subgraph
    isomorphism detection," in Proceedings of the 1st ACM workshop on Virtualized
    infrastructure systems and architectures. ACM, 2009, pp. 81{88.
    [4] M. Chowdhury, M. R. Rahman, and R. Boutaba, \Vineyard: Virtual network em-
    bedding algorithms with coordinated node and link mapping," IEEE/ACM Trans-
    actions on Networking (TON), vol. 20, no. 1, pp. 206{219, 2012.
    [5] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, and X. Hesselbach, \Virtual net-
    work embedding: A survey," Communications Surveys & Tutorials, IEEE, vol. 15,
    no. 4, pp. 1888{1906, 2013.
    [6] M. Yu, Y. Yi, J. Rexford, and M. Chiang, \Rethinking virtual network embedding:
    substrate support for path splitting and migration," ACM SIGCOMM Computer
    Communication Review, vol. 38, no. 2, pp. 17{29, 2008.
    [7] Y. Zhu and M. H. Ammar, \Algorithms for assigning substrate network resources
    to virtual network components." in INFOCOM, vol. 12, 2006.
    [8] J. Infuhr and G. R. Raidl, \Introducing the virtual network mapping problem with
    delay, routing and location constraints," in Network Optimization. Springer, 2011,
    pp. 105{117.
    [9] R. Mijumbi, J. Serrat, J.-L. Gorricho, and R. Boutaba, \A path generation ap-
    proach to embedding of virtual networks," Network and Service Management, IEEE
    Transactions on, vol. 12, no. 3, pp. 334{348, 2015.
    [10] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakr-
    ishnan, V. Subramanya, and A. Vahdat, \Portland: a scalable fault-tolerant layer 2
    data center network fabric," in ACM SIGCOMM Computer Communication Review,
    vol. 39, no. 4. ACM, 2009, pp. 39{50.
    [11] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and S. Lu,
    \Bcube: a high performance, server-centric network architecture for modular data
    centers," ACM SIGCOMM Computer Communication Review, vol. 39, no. 4, pp.
    63{74, 2009.
    [12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz,
    P. Patel, and S. Sengupta, \Vl2: a scalable and
    exible data center network," in
    ACM SIGCOMM computer communication review, vol. 39, no. 4. ACM, 2009, pp.
    51{62.
    [13] \Cogent's online network map. [http://cogentco.com/en/network/network-map]."
    [14] K. C.-J. L. T.-W. Kuo, B.-H. Liou and M.-J. Tsai, \Deploying chains of virtual net-
    work functions: On the relation between link and server usage." in IEEE INFOCOM,
    2016.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE