研究生: |
方新發 Fang, Hsin-Fa |
---|---|
論文名稱: |
輻射防護環境輻射量測與模式驗證之案例研究與方法創新 Case Studies of Environmental Radiation Measurement and Model Validation with Innovative Ways for Radiation Protection |
指導教授: |
王竹方
Wang, Chu-Fang |
口試委員: |
袁明程
Yuan, Ming-Chen 李振弘 Lee, Jen-Horng 黃素珍 Huang, Shu-Jane 李明禹 Lee, Ming-Yu |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 136 |
中文關鍵詞: | 環境輻射 、量測 、模式 、氚 、蒸餾 、除汙因子 、蒸氣壓同位素效應 、地理資訊系統 、大氣擴散 、Google 地球 、驗證 |
外文關鍵詞: | Environmental radiation, Measurement, Model, Tritium, Distillation, Decontamination factor, VPIE, GIS, Atmospheric dispersion, Google Earth, Validation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環境輻射量測與模式模擬對於環境與人們的輻射防護,扮演著非常重要的角色。此論文中將報告對於環境輻射監測與大氣模式驗證的精進努力,以提升輻射防護能量。於研究中,此論文作者發現一些創新方法,來進行環境輻射量測與模式結果驗證與展示,包括設計一個新型氣冷式蒸餾裝置來用於環境氚水監測和一個行動環境偵測系統 (MESS) 用於管理經營環境輻射偵測等。二者都已經獲得美國與本國專利。
本論文第一章為對核能重要性、輻射防護、環境輻射監測與模式模擬之簡要概述。第二章為對環境輻射監測與模式驗證之文獻回顧。第三章詳細描述該氣冷式蒸餾裝置,該裝置於組合與操作上,都比傳統蒸餾裝置簡便。當裝置組成之一的樣品容器高度從7 公分增加到20 公分,除汙因子將增加約20 倍。第四章內容有MESS 的詳細設計說明,MESS 藉由地理資訊系統 (GIS),可依據工作人員位置與預先設定的指定區域,經營管理環境輻射監測活動及在任何地方即時展示最新偵測結果。MESS 可以確實改善環境偵測團隊的效能與靈活度。第5 章呈現對於大氣擴散展示與評估平台(ADDEP)的描繪,可以展示大器擴散模擬結果於Google Earth 上,並可藉由網路介面整合資料數據以驗證模擬結果,有助於決策及模式改善。最後,第六章為此論文的總結。
Environmental radiation measurement and model simulation play important roles in the radiation protection of people and environment. This dissertation shows the efforts on the improvements of environmental radiation monitoring and model validation for radiation protection. During the study, this author found some innovative ways for environmental radiation measurement and model validation and display, including designed a new air cooling distillation device for environmental tritiated water monitoring and a mobile environmental survey system (MESS) for managing the works of environmental radiation survey. Both of them have got US patents and domestic patents.
Chapter 1 gives a brief description of the importance of nuclear energy, radiation protection, environmental radiation monitoring and model simulation. Literature reviews for environmental radiation monitoring and model validation are given in Chapter 2. Chapter 3 gives the detailed descriptions of the air cooling distillation device. It can be set up and operated more easily than the traditional devices used for the distillation process. The decontamination factor (DF) value is increased about 20 times by increasing the height of the container from 7 cm to 20 cm. Chapter 4 gives the detailed design of MESS which can real time manage the activity of environmental radiation monitoring according to the worker location and the pre-set specific area and display the latest survey result anywhere by Geographic Information System (GIS). MESS can really improve the efficiency and agility of the environmental survey team. Chapter 5 depicts the functions of the atmosphere dispersion display and evaluation platform (ADDEP) which can display the result of atmospheric dispersion simulation on Google Earth and validate the simulation result by integrating data with web-based interfaces for decision making and model improvement. Finally, chapter 6 is the summary of this thesis.
References
Abduragimov, I. M., and Odnolko, A. A., 1993, Fires on contaminated territories. Priroda, 1, 28-30 (in Russian).
Akata, N., Kakiuchi, H., Shima, N., Iyogi, T., Momoshima, N. and Hisamatsu, S., 2011,Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant, Journal of Environmental Radioactivity, 102, 837-842.
Amano, H., Atarashi, M., Noguchi, H., Ichimasa, Y., Ichimasa, M., 1995, Formation of organically bound tritium in plants during atmospheric HT chronic release experiment at Chalk River. Fusion Technol. 28, 803-808.American Society for Testing and Materials (ASTM), 2000, Standard Guide for Statistical Evaluation of Atmospheric Dispersion Model Performance (D 6589), American Society for Testing and Materials, West Conshohocken, USA.
Amiro B. D., 1997. Special Issue of the Journal of Environmental Radioactivity on Environmental Tritium. Journal of Environmental Radioactivity. 36. 109.
Amiro, B. D., 1997, Special Issue of the Journal of Environmental Radioactivity on Environmental Tritium. Journal of Environmental Radioactivity, 36, 109.
Anderson, H. A., Sargent, R. G., 1974, An investigation into scheduling for an interactive computer system. IBM Journal of Research and Development 18, 2, 125-137.
ANL (Argonne National Laboratory),2005, Tritium (hydrogen-3). EVS Human Health Fact Sheet.
Arkhipov, N. P., Arkhipov, A.N., Voitsekhovich, O.V., Gladkov, G.N., Djepo, S.P., Drapeco, G.F., Kuchma, N.O., Korotkov, V.T., Lebega, V.S., Marchenko, V.I., Nosovsky, A.V., Sukhoruchkin, A.K., Tepikin, V.E., Tikhanov, E.K., and Shestopalov, V.M., 1995, Bulletin of ecological situation in the exclusion zone for first half-year of 1995, Issue 5, Chernobyl, Ukraine (in Russian).
ASTM International, 2010, Standard Guide for Statistical Evaluation of Atmospheric Dispersion Model Performance- ASTM D6589-05, ASTM International.
ASTM International, 2013. Standard Test Method for Tritium in Drinking Water. West Conshohocken, PA: ASTM D4107-08 (reapproved ).
Atkinson, R., T. Eddy, W. Kuhne, T. Jannik, A. Brandl, 2014, Measurement of the tritium concentration in the fractionated distillate from environmental water samples, Journal of Environmental Radioactivity, 135, 113-119.
Atomic Energy Council (AEC), 2002, Ionizing Radiation Protection Act, Issued on 2002. 1. 30, Available on website: http://erss.aec.gov.tw/law/ EngLawContent.aspx?Type=E&id=4.
Atomic Energy Council (AEC), 2011, The Comprehensive Checking Program for the Present Safety Protection of Domestic Nuclear Power Plant, , Available on website: http://www.aec.gov.tw/webpage/npp-check/files/index_02_1.pdf.
Atomic Energy Council, 2003 (AEC), Nuclear Emergency Response Act, Issued on 2003. 12. 24, Available on website: http://erss.aec.gov.tw/law/EngLawContent.aspx? Type=E&id=5.
Atomic Energy Council, Nuclear Emergency Response Act, Presidential Decree No. Hua-Tsong-Yi-Yi-Tsu 09200240981, Taiwan, December 24 2003, available from http://www.aec.gov.tw/www/english/laws/files/NuclearEmergencyResponseAct.pdf on August 15 2010.
Begemann, F., 1963, Earth Science and Meteorites, North Holland Publishing Co., Amsterdam pp. 169-187.
Beiriger, J.M., Failor, R.A., Marsh, K.V., Shaw, G.E., 1988, Radioactive fallout fromthe Chernobyl nuclear reactor accident, Journal of Radioanalytical and Nuclear Chemistry,123, 21–37.
Bobovnikova, Ts. I., Virchenko, E. P., Konoplev, A.V., Siverina, A.A. and Shkuratova, I. G., 1990, Chemical forms of the long-living radionuclides and their transformation in the Chernobyl accident zone. Pochvovedeniye (Soil Sci.),10, 20 –25 (In Russian).
Bolsunovsky, A.Ya., L.G. Bondareva, 2003, Tritium in surface waters of the Yenisei River basin, Journal of Environmental Radioactivity, 66, 285-294.
Bossew, P., Gastberger, M., Gohla, H., Hofer, P and Hubmer, A., 2004, Vertical distribution of radionuclides in soil of a grassland site in Chernobyl exclusion zone, Journal of Environmental Radioactivity, 73(1), 87–99.
Bowen, V.T. and W. Roether. 1973. Vertical distributions of strontium-90, caesium-137 and tritium near 45° north in the Atlantic. J. Geophys. Res., 78: 6277-6285.
Bureau of Energy (BOE), 2014, Energy Supply and Demand Situation of Taiwan in 2013, Available on website: http://web3.moeaboe.gov.tw/ECW/populace/content/ContentLink.aspx? menu_id=137.
Butler, D., 2011. The world’s nuclear reactors as you’ve never seen them…, Nature News Blog, available on http://blogs.nature.com/news/2011/03/the_worlds_nuclear_reactors_as_1.html.
Cambray, R.S., Cawse, P.A., Garland, J.A., Gibson, J.A.B., Johnson, P., Lewis, G.N.J., 1987, Observations on radioactivity from the Chernobyl accident. Nuclear Energy, 26, 77-101.
Canadian Nuclear Safety Commission (CNSC), 2009, Investigation of the Environmental Fate of Tritium in the Atmosphere, Canadian Nuclear Safety Commission, Canada, available from http://www.nuclearsafety.gc.ca/eng/resources/ health/ health-studies/tritium/environmental_fate_of_tritium_in_the_atmosphere.cfm
Carson, J., 2002, Model Verification and Validation, Proceedings of the 2002 Winter Simulation Conference, San Diego, USA.
Chang, K.-H., Jeng, F.-T., Tsa, Y.-L., Lin,P.-L., 2000. Modeling of long-range transport on Taiwan's acid deposition under di!erent weather conditions, Atmospheric Environment,34, 3281-3295.
Chen, T.-F., Chang, K.-H., 2006. Formulating the relationship between ozone pollution features and the transition value of photochemical indicators, Atmospheric Environment, 40, 1816-1827.
Cheng, Y.-H., Shih, C., Jiang, S.-C., Weng, T.-L., 2008. Improvement of accidental dose consequences simulation software for nuclear emergency response applications. Annals of Nuclear Energy 35 (10), 1864–1877.
CNSC (Canadian Nuclear Safety Commission), 2009, Investigation of the Environmental Fate of Tritium in the Atmosphere, INFO-0792, Canadian Nuclear Safety Commission , Canada, ISBN 978-1-100-13928-9.
Dan Gateriu and Anca Melintescu, 2010, Radionuclides in the Environment- Tritium, John Willey & Sons Ltd, ISBN 978-0-470-71434-8, 47-64.
Dabberdt, W., Carroll, M., Baumgardner, D., Carmichael, G., Cohen, R., Dye, T., Ellis, J., Grell, G., Grimmond, S., Hanna, S., Irwin, J., Lamb, B., Madronich, S., McQueen, J., Meagher, J., Odman, T., Pleim, J., Schmid, H.P., Westphal, D., 2004. Meteorological research needs for improved air quality forecasting. Bulletin of the American Meteorological Society, 85, 563-586.
Davis P. A., Tritium Transfer Parameters for the Winter Environment. Journal of Environmental Radioactivity. 36. 177-196.
Davis, P. A., Tritium Transfer Parameters for the Winter Environment. Journal of Environmental Radioactivity. 36. 177-196.
Demerjian, K.L., 1985, Quantifying uncertainty in long-range transport models: a summary of the AMS workshop on sources and evaluation of uncertainty in long-range-transport models. Bulletin of the American Meteorological Society 66, 1533-1540.
Devell, L., Tovedal, H., Bergström, U., Appelgren, A., Chyssler, J., Andersson, L., Initial observations of fallout from the reactor accident at Chernobyl, Nature, 321, 192–193.
Diabaté, S., Strack, S., 1997, Organically bound tritium in wheat after short-term exposure to atmospheric tritium under laboratory conditions. Journal of Environmental Radioactivity, 36, 157-175.
Environmental Protection Agency (EPA), 2012, Documentation of the Evaluation of CALPUFF and Other Long Range Transport Models Using Tracer Field Experiment Data. U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, EPA-45/R-12-003.
Fang, H.F., C.F. Wang, J.J. Wang, 2013, An innovative distillation device for tritiated water analysis with high decontamination factor, Applied Radiation and Isotopes, 81, 272-275.
Feely, H.W., Helfer, I.K., Juzdan, Z.R., Klusek, C.S., Larsen, R.J., Leifer R, Sanderson, C.G., 1988, Fallout in the New York metropolitan area following the Chernobyl accident. Journal of Environmental Radioactivity, 7, 177–191.
Filho, L.S., Fernando F., Soares, D., Aguiar, D. S., Lapa, A., Lapa, F., Marcelo, C., and Guimaraes, F., Carlos A., 2013, Advanced nuclear reactors and tritium impacts. Modeling the aquatic pathway, Progress in Nuclear Energy, 69, 9-22.
Florkowski, T., Kuc, T. and Rozanski, K., 1988, Influence of the chernobyl accident on the natural levels of tritium and radiocarbon, International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes. 39. 1.77-79.
Food and Agriculture Organization of the United Nations (FAO), International Atomic Energy Agency, International Labour Organization, OECD Nuclear Energy Agency, Pan American Health Organization, World Health Oganization, 1996, International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, Safety Series No. 115, International Atomic Energy Agency, Vienna, Austria.
Food and Agriculture Organization of the United Nations (FAO), International Atomic Energy Agency, International Labour Organization, OECD Nuclear Energy Agency, Pan American Health Organization, World Health Oganization, 2002, Preparedness and Response for a Nuclear or Radiological Emergency, IAEA Safety Standards Series No. GS-R-2, International Atomic Energy Agency, Vienna, Austria.
Fox, D.G., 1981, Judging Air Quality Model performance, Bulletin of the American Meteorological Society, 62, 599-609.
Fox, D.G., 1984, Uncertainty in air quality modeling. Bulletin of the American Meteorological Society 65, 27-36.
Frank N. von Hippel, 2011, The radiological and psychological consequences of the Fukushima Daiichi accident, Bulletin of the Atomic Scientists. vol. 67, no. 5, 27–36.
Franciane de Carvalho Gomes, José Marcus Godoy, Zenildo Lara de Carvalho, Elder Magalhães de Souza, José Ivan Rodrigues Silva, Ricardo Tadeu Lope, 2014, Tritium (3H) as a tracer for monitoring the dispersion of conservative radionuclides discharged by the Angra dos Reis nuclear power plants in the Piraquara de Fora Bay, BrazilOriginal Research Article, Journal of Environmental Radioactivity, 136, 169-173.
Galmarini, S., Bianconi, R., Klug, W., Mikkelsen, T., Addis, R., Andronopoulos, S., Astrup, P., Baklanov, A., Bartniki, J., Bartzis, J.C., Bellasio, R., Bompay, F., Buckley, R., Bouzom, M., Champion, H., D’Amours, R., Davakis, E., Eleveld, H., Geertsema, G.T., Glaab, H., Kollax, M., Ilvonen, M., Manning, A., Pechinger, U., Persson, C., Polreich, E., Potemski, S., Prodanova, M., Saltbones, J., Slaper, H., Sofiev, M.A., Syrakov, D., Sørensen, J.H., Van der Auwera, L., Valkama, I., Zelazny, R., 2004. Ensemble dispersion forecasting part I: concept, approach and indicators. Part II: application and evaluation. Atmospheric Environment, 38, 4607~4632.
Galeriu, D., and A. Melintescu , S. Strack, M. Atarashi-Andoh and S.B. Kim, 2013, An overview of organically bound tritium experiments in plants following a short atmospheric HTO exposure, Journal of Environmental Radioactivity, 118, 40-56.
García-León, M. and Manjón, G., 1997, Some comments on the presence of Chernobyl derived 137Cs and 99Tc in the stratosphere Applied Radiation and Isotopes, 48( 5), 653–656.
Gattavecchia, E., Ghini, S., Tonelli, D., 1989, Fallout from Chernobyl in Bologna and its environs: radioactivity in airborne, rain water and soi, Journal of Radioanalytical and Nuclear Chemistry, 133, 407–419.
Goodchild, M.F., 2008. The use cases of digital earth. International Journal of Digital Earth, 1, 31–42.
Gudkov, D.I, A.B. Nazarov, E.V. Dziubenko, A.E. Kaglian, V.G. Klenus, 2009, radioecological monitoring system established in the Exclusion Zone, Radiats Biol Radioecol., 49(6), 703-713.
Guétat P., Douche C., Hubinois J. C., 2008. Emerging Issues on Tritium and Low Energy Beta Emitters – 5. Source, Measurement and Transfer, Radiation Protection No. 152. European Commission. 59-72. Luxembourg.
Hanna, S.R., 1988, Air Quality Model Evaluation and Uncertainty, Journal of the Air Pollution Control Association, 38, 4, 406-412.
Hanna, S.R., Gifford, F.A., 1971, Summary of meeting on mesoscale atmospheric modeling. Bulletin of the American Meteorological Society 52, 993.
Higuchi, H., Fukatsu, H., Hashimoto, T., Nonaka, N., Yoshimizu, K., Omine, M., 1988, Radioactivity in surface air and precipitation in Japan after the Chernobyl accident, Journal of Environmental Radioactivity, 6, 131–144.
Hill, R., Taylor, J., Lowles, I., Emmerson, K., Parker, T., 2004, A New Model Validation Database for Evaluating AERMOD, NRPB R91 and ADMS Using Krypton-85 Data from BNFL Sellafield, 8th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes.
Holliday, B., K.C. Binns and S.P. Stewart, 1986, Monitoring Minsk and Kiev students after Chernobyl, Nature, 321, 820-821.
Holgye, Z., 2008, Plutonium isotopes in surface air of Prague in 1986–2006, Journal of Environmental Radioactivity, 99, 1653–1655.
HPS (Health Physics Society), 2011, Tritium Fact Sheet, Health Physics Society, Available at: hps.org/documents/tritium_fact_sheet.pdf, Accessed 7 October 2014.
Hughes, C.E., D.I. Cendón, J.J. Harrison, S.I. Hankin, M.P. Johansen, T.E. Payne, M. Vine, R.N. Collins, E.L. Hoffmann, T. Loosz, 2011, Movement of a tritium plume in shallow groundwater at a legacy low-level radioactive waste disposal site in eastern Australia, Journal of Environmental Radioactivity, 102, 10, 943-952.
Huh, C.A., S.C. Hsu, C.Y. Lin, 2012. Fukushima-derived fission nuclides monitored around Taiwan: Free tropospheric versus boundary layer transport, Earth and Planetary Science Letters, 319-320, 9-14.
Imamura, E., Nagano, K., 2010, Evaluation of Life Cycle CO2 Emissions of Power Generation Technologies — Update for State-of-the-art Plants, Report No. y09027, Central Research Institute of Electric Power Industry, Tokyo (in Japanese).
International Atomic Energy Agency (IAEA) , 1992, Modelling of resuspension, seasonality and losses during food processing: First report of the VAMP Terrestrial Working Group, International Atomic Energy Agency, IAEA-TECDOC-647, Vienna, Austria.
International Atomic Energy Agency (IAEA), 1975, Objectives and Design of Environmental Monitoring Programmes for Radioactive Contaminants, Safety Series No. 41, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 1978, Monitoring of Airborne and Liquid Radioactive Releases from Nuclear Facilities to the Environment, Safety Series No. 46, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 1995, The Principles of Radioactive Waste Management, Safety Series No. 111-F, International Atomic Energy Agency, Vienna.
International Atomic Energy Agency (IAEA), 1996,
International Atomic Energy Agency (IAEA), 1997, Generic Assessment Procedures for Determining Protective Actions during a Reactor Accident, IAEA TECDOC-955, IAEA, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 1999, Generic Procedures for Monitoring in a Nuclear or Radiological Emergency, IAEA-TECDOC-1092, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 1999, Near Surface Disposal of Radioactive Waste, IAEA Safety Standards Series No WS-R-1, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 2000, Generic Procedures for Assessment and Response during a Radiological Emergency, IAEA-TECDOC-1162, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 2000, Regulatory Control of Radioactive Discharges to the Environment, IAEA Safety Standards Series No WS-G-2.3, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 2001, Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to Environment, Safety Reports Series No.19, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 2002, Planning and Preparing for Emergency Response to Transport Accidents Involving Radioactive Material, IAEA Safety Standards Series No. TS-G-1.2 (ST-3), International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 2003, Method for Developing Arrangements for Response to a Nuclear or Radiological Emergency, EPR Method, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 2005, Environmental and Source Monitoring for Purpose of Radiation Protection, IAEA SAFETY STANDARDS SERIES No. RS-G-1.8, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 2005, Environmental and Source Monitoring for Purposes of Radiation Protection, IAEA Safety Standards Series No. RS-G-1.8, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 2006, Environmental Consequences of the Chernobyl Accident and Their Remediation: Twenty Years of Experience, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 2008, Modelling the Environmental Transfer of Tritium and Carbon-14 to Biota and Man. Report of the Tritium and Carbon-14 Working Group of EMRAS Theme 1. International Atomic Energy Agency (IAEA)’s Environmental Modelling for Radiation Safety (EMRAS) Programme 2003~2007, IAEA, Vienna.
International Atomic Energy Agency (IAEA), 2011, IAEA Action Plan on Nuclear Safety, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 2013, Climate Change and Nuclear Energy 2013, International Atomic Energy Agency, Vienna, Austria.
International Atomic Energy Agency (IAEA), 2013, Energy, Electricity and Nuclear Power Estimates for the Period up to 2050, 2013 edn, Reference Data Series No.1, International Atomic Energy Agency, Vienna, Austria. (2013).
International Commission on Radiation Protection (ICRP), 1983, Radionuclide transformations: Energy and intensity of emissions, New York: Pergamon Press; ICRP Publication 38, Annals of the ICRP, 11-13, Elsevier. .
International Commission on Radiation Protection (ICRP), 2007, Recommendations of the International Commission on Radiological Protection, ICRP Publication 103, Annals of the ICRP, 37 (2-4), Elsevier.
International Commission on Radiological Protection (ICRP), 1985, Principles of Monitoring for the Radiation Protection of the Population, International Commission on Radiological Protection Publication 43, Pergamon Press, Oxford and New York.
International Panel on Climate Change (IPCC), 2007, Climate Change 2007: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
International Atomic Energy Agency (IAEA) PRIS (Power Reactor Information System), 2013. Nulcear Power Reactors in the World, IAEA-RDS-2/33, IAEA, Vienna.
Irlweck, K., Khademi, B., Henrich, E., Kronraff, R., 1993, 239(240),238Pu, 90Sr, 103Ru and 137Cs concentrations in surface air in Austria due to dispersion of Chernobyl releases over Europe, Journal of Environmental Radioactivity, 20, 133–148.
Irlweck, K., Wicke, J., 1988, Isotopic composition of plutonium immissions in Austria after the Chernobyl accident, Journal of Radioanalytical and Nuclear Chemisty, 227, 133-136.
Irwin, J. S., Carruthers, D., Paumier, J., Stocker, J., 2001, Application of ASTM 6589 to Evaluate Dispersion Model Performance to simulate average centerline Concentration Values, 8th International Conference on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes.
Irwin, J. S., Civerolo, K., Hogrefe, K.C., Appel, W., Foley, K., Swall, J., 2008, A procedure for inter-comparing the skill of regional-scale air quality model simulations of daily maximum 8-h ozone concentrations, Atmospheric Environment. 42, 5403–5412.
Irwin, J.S. and Rosu, M-R., 1998, Comments on a draft practice for statistical evaluation of atmospheric dispersion models. Proceedings of the 10th Joint Conference on the Application of Air Pollution Meteorology with the A&WMA. Phoenix, AZ., p 6-10.
Izrael YuA, Sudkova YA, eds. Atlas of radioactive contamination of the European part of Russia, Belarus and Ukraine. St. Petersburg: Geodetic and Cartographic Service; 1998 (in Russian).
Izrael, Yu. A., Con, M. De., Jones, A.R., Nazarov, I.M., Fridman, Sh. D., Kvasnikova, E.V., Stukin, ED., Kelly, G.N., Matveenko, I.I., Poumeiko, Yu. M., Tabatchnyi, L. Ya. and Tsaturo, Yu., 1996, The Atlas of Caesium-137 contamination of Europe after the Chernobyl accident, Proceedings of the first interhational conference of the Radiological Consequences of the Chernobyl Accident, Minsk, Belarus.
Jain N., Bhatia A.L., 2011. Tritium in the environment and its impact assessment against the existing radiation protection framework revisited. Radioprotection. 46. 6. S385–S391.
Janovicsa, R., Á. Biharia, L. Pappa, Z. Dezsőb, Z. Majora, K.E. Sárkányc, T. Bujtásd, M. Veresb, L. Palcsua, 2014, Monitoring of tritium, 60Co and 137Cs in the vicinity of the warm water outlet of The Paks Nuclear Power Plant, Hungary, Journal of Environmental Radioactivity, 128, 20–26.
Jay Wu, Chung-Hsin Lu, Shu-Jun Chang, Yung-Muh Yang, Bor-Jing Chang, and Jen-Hsin Teng (2006), Three-dimensional dose evaluation system using real-time wind field, Nuclear Instruments and Methods in Physics Research A 565, 812–820.
Jean-François Mercier et al., Increased environmental gamma-ray dose rate during precipitation: a strong correlation with contributing air mass, Journal of Environmental Radioactivity, No.100: 527-533; 2009.
Kashparov ,V.A., Ivanov, Yu.A., Zvarich, S.I., Protsak, V.P., Khomutinin, Yu.V., Kurepin, A.D. and Pazukhin, E.M., 1996, Formation of hot particles during the Chernobyl nuclear power plant accident. Nuclear Technology, 114, 246 –253.
Kashparov, V. A., Lundin, S. M., Kadygrib, A. M., Protsak, V. P., Levtchuk, S. E., Yoschenko, V. I., Kashpur, V. A. and Talerko, N. M., 2000, Forest fires in the territory contaminated as a result of the Chernobyl accident: radioactive aerosol resuspension and exposure of fire- fighters, Journal of Environmental Radioactivity 51, 281-298.
Kaufman, S. and Libby, W. F., 1954, The natural distribution oftritium Physical Review, 93, 1337-1344.
Kim C. K., Han M. J., 1999. Dose assessment and behavior of tritium in environmental samples around Wolsong nuclear power plant. Applied Radiation and isotopes 50, 783-791.
Kim C.K., Rho B.H., Lee k. J., 1997. Environmental Tritium in the Areas Adjacent to Wolsong Nuclear Power Plant. Journal of Environmental Radioactivity. 36. 217-231.
Kim, C.K., Rho, B.H., Lee, k. J., 1997. Environmental Tritium in the Areas Adjacent to Wolsong Nuclear Power Plant. Journal of Environmental Radioactivity. 36. 217-231.
Kim, H.R., 2013, The radioactivity estimation of 14C and 3H in graphite waste samples of the KRR-2, Applied Radiation and Isotopes, 79, 109-113.
Kim, S.B., Bredlaw, M., Korolevych, V.Y., 2012, HTO and OBT activity concentrations in soil at the historical atmospheric HT release site (Chalk River Laboratories), Journal of Environmental Radioactivity, 103, 34-40.
Koivukoski, J. and Paatero, J., 2013, Dose rate mapping and quantitative analysis of radioactive deposition with simple monitoring instruments in Finland after the Chernobyl accident, Boreal Environment Research, 18(1), 61-73.
Kolejka, J. (editor), 2002, Role of GIS in Lifting the Cloud Off Chernobyl- Proceedings of the NATO Advanced Research Workshop on Role of Geoinformation Technology in Mitigation of Chernobyl Nuclear Accident, Nato Science Series IV: Vol. 10, Yalta, Ukraine.
Kownacka, L. and Jaworowski, Z., 1987, Vertical distribution of 131I and radiocesium in the atmosphere over Poland after Chernobyl accident. Acta Geophysica Polonica, 35, 101-109.
Kownacka, L. and Jaworowski, Z., 1988, Tropospheric and stratospheric distributions of radioactive iodine and cesium after the Chernobyl accident,
Kownacka, L. and Jaworowski, Z., 1994, Nuclear weapon and Chernobyl debris in the troposphere and lower stratosphere, The Science of the Total Environment, 144, 201-215.
Kung, C.H., Solvberg, A., 1986, Activity Modeling and Behavior Modeling, In: T. Ollie, H. Sol, A. Verrjin-Stuart, Proceedings of the IFIP WG 8.1 working conference on comparative review of information systems design methodologies: improving the practice, North-Holland, Publishing Co. Amsterdam, Netherlands, 145-171.
Kuriny, V.D., Ivanov, Yu.A., Kashparov, V.A., Loschilov, N.A., Protsak, V.P., Yudin, E.B., Zhurba, M.A., Parshakov, A.E., 1993, Particle associated Chernobyl fall-out in the local and intermediate zones. Annal of Nuclear Energy, 20, 415 –420.
L. Lebaron-Jacobs, 2007, Emerging Issues on Tritium and Low Energy Beta Emitters – Chapter 1 Introduction, Radiation Protection No. 152. European Commission, Luxembourg.
Larsen, R.J., Haagenson, P.L., Reiss, N.M., 1989, Transport processes associated with the initial elevated concentrated of Chernobyl radioactivity in surface air in the United States, Journal of Environmental Radioactivity, 10, 1-18.
Liu, T.-H., Tsai, F., Hsu, S.-C., , Shiu, C.-J., Chen, W.-N., Tu, J.-Y., Chen, G.-R., Chuang, Y.-L., 2009. Southeastward Transport of Asian Dust and its Contributions to Northern Taiwan, Atmospheric Environment, 43, Issue 2, 458-467.
Liu,T.-H., Hsu S.-W., Lin, C.-G., Fang, H.-F., 2012. The establishment ofMM5/TAQM Radioactive Materials Transportation Simulation System, Institute of Nuclear Energy Research, INER Report No. INER-OM-1993R, Institute of Nuclear Energy Research, Taiwan.
Loshchilov, N. A., Kashparov, V. A., Yudin, Y. B., Protsak, V. P., Zhurba, M. A. and Parshakov, A. E., , 1991, Experimental assessment of radioactive fallout from the Chernobyl accident. Sicurezza eProtezione, 25–26, 46–49.
Loshchilov, N.A., Kashparov, V.A., Poliakov, V.D., Protsak, V.P., Yudin, E.B., Zhurba, M.A. and Parshakov, A.E., 1992a. Chemical–physical characteristics of hot particles, formed as a result of Chernobyl accident. Radiohimiya (Radiochemistry) 1992;4:113 –125 (In Russian with English abstract).
Loshchilov, N.A., Kashparov, V.A., Yudin, E.B., and Protsak, V.P., 1992b, The fractionation in Chernobyl fuel hot particles, Radiohimiya (Radiochemistry) 1992;5:125 –134 (In Russian with English abstract).
Lujanienėa, G., Aninkevičiusb, V. and Lujanasa, V., 2009, Artificial radionuclides in the atmosphere over Lithuania, Journal of Environmental Radioactivity, 100(2), 108–119.
Matsumoto, Takuya and Maruoka, Teruyuki and Shimoda, Gen and Obata, Hajime and Kagi, Hiroyuki and Suzuki, Katsuhiko and Yamamoto, Koshi and Mitsuguchi, Takehiro and Hagino, Kyoko and Tomioka, Naotaka and Sambandam, Chinmaya and Brummer, Daniela and Klaus,
Mitchel, L. 1976. Tritium inventories of the world oceans and their implications. Nature 263:103-106.
Martin, P. and Aggarwal, Pradeep, 2013, Tritium in Japanese precipitation following the March 2011 Fukushima Daiichi Nuclear Plant accident, Science of the Total Environment, 445-446, 365-370.
Metz, B., Davidson, O., Bosch, P., Dave, R., Meyer, L., 2007. Climate Change 2007: Mitigation of Climate Change- Chapter 4: Energy Supply, Cambridge University Press, Cambridge, United Kingdom. Available on: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_wg3_report_mitigation_of_climate_change.htm
Mietelskia, J. W., Maksimovab, S., Szwałko, P., Wnukdm, K., Zagrodzkia, P., Błażeja, S., Gacaa, P., Tomankiewicza, E. and Orlov O., 2010, Plutonium, 137Cs and 90Sr in selected invertebrates from some areas around Chernobyl nuclear power plant, Journal of Environmental Radioactivity, 101(6), 488–493.
Mishra, U.C., 1990, Comparison of radionuclides levels from the Chernobyl reactor accident and from global fallout, Journal of Radioanalytical and Nuclear Chemistry,138, 119–125.
Nankar, D.P., A.K. Patra, P.M. Ravi, C.P. Joshi, A.G. Hegde, P.K. Sarkar, 2012, Studies on the rain scavenging process of tritium in a tropical site in India, Journal of Environmental Radioactivity, 104, 7-13.
Naoto Fujinami, Observational study of the scavenging of radon daughters by precipitation from the atmosphere, Environmental International, No. 22, Supplement 1: S181-S185; 1996.
National Council on Radiation Protection and Measurements (NCRP), 1985, A handbook of radioactivity measurements procedures. 2nd ed., NCRP; Report No. 58, 368.
National Renewable Energy Laboratory (NREL), 2012, Meta-Analysis of Life Cycle Assessments, Journal of Industrial Ecology 16 Suppl. 1, S1-S205.
Okada, S. and N. Momoshimat, 1993, VERVIEW OF TRITIUM: CHARACTERISTICS, SOURCES, AND PROBLEMS, Health Physics, 65 (6), 595-609.
OECD International Energy Agency (IEA), 2013, World Energy Balances, IEA World Energy Statistics and Balances, Available on website: http://www.oecd-ilibrary.org/energy/data/iea-world-energy-statistics-and-balances/world-energy-balances_data-00512-en.
Oza, R.B., Indumati, S.P., Puranik, V.D., Sharma, D.N., Ghosh, A.K., 2013. Simplified approach for reconstructing the atmospheric source term for Fukushima Daiichi nuclear power plant accident using scanty meteorological data, Annals of Nuclear Energy, 58, 95-101.
P. Theodorsson, 1999, A Review of Low-level Tritium Systems and Sensitivity Requirements, Applied Radiation and Isotopes 50. 311-316.
Warwick, P.E., Croudace, I.W., Howard, A. G., 1999, Improved Technique for the Routine determination of Tritiated Water in Aqueous Samples. Analytica Chimica Acta. 382. 225-231.
Paatero, J., Hameri, K., Jaakkola, T., Jantunen, M., Koivukoski, J. Saxen, R., 2010, Airborne and deposited radioactivity from the Chernobyl accident — a review of investigations in Finland, Boreal Environ Res, 15, 19–33.
Papastefanou, C., Manolopoulou, M., Charalambous, S., 1988, Radiation measurements and radioecological aspects of fallout from the Chernobyl reactor accident, Journal of Environmental Radioactivity, 7, 49–64.
Papastefanou, C., Manolopoulou, M., Ioannidou, A., Zahariadou, K., Stoulos, S., Charalambous ,S., 1989, Time-dependent radioactive concentrations of fallout following the Chernobyl reactor accident, Science of Total Environment, 84, 283–289.
Paul, M., Fink, D., Hollos. G., Kaufman, A., Kutschera, W., Magaritz, M., 1987, Measurement of Iodine-129 Concentrations in the Environment after the Chernobyl Reactor Accident, Nulcear Instrument and Nuclear Instruments and Methods in Physics Research Section B , B29, 341–345.
Phillip Lipscy, Kenji Kushida, and Trevor Incerti, 2013. "The Fukushima Disaster and Japan’s Nuclear Plant Vulnerability in Comparative Perspective." Environmental Science and Technology, 47, 6082-6088.
Power Reactor Information System (PRIS), 2013, PRIS database (2013), International Atomic Energy Agency, Available on website: http://www.iaea.org/pris/
R.V. Osborne, A.S. Coveart, 1977, A Transportable Monitor for Tritiated Water Vapour, IRPA 4 Proceedings, International Radiation Protection Association, Paris, France. (downloaded from http://www.irpa.net/irpa4/cdrom/VOL.3/P3_24.PDF on )
References
Sargent, R.G., 1981, An Assessment Procedure and a Set of Criteria for Use in the Evaluation of Computerized Models and Computer-Based Modeling Tools. Final Technical Report RADC-TR-80-409, U.S. Air Force.
Sargent, R.G., 2010, Verification and Validation of Simulation Models, Proceedings of the 2010 Winter Simulation Conference, Baltimore, USA.
Sargent, R.G., 2011, Verification and Validation of Simulation Models, Proceedings of the 2011 Winter Simulation Conference, Phoenix, USA.
Sheldon Kaufman and W. F. Libby, 1954, The Natural Distribution of Tritium, Phys. Rev. 93, 1337.
Schell, W.R., S. Sauzay and B.R. Payne. 1974. World distribution of environmental tritium. In: Physical Behaviour of Radioactive Contaminants in the Atmosphere. IAEA/STI/PUBI3451, IAEA, Vienna, 374-385.
Schlünzen, K. ., Sokhi, R. S. (editors), 2008. Overview of Tools and Methods for Meteorological and Air Pollution Mesoscale Model Evaluation and User Training, Joint Report of COST Action 728 (Enhancing Mesoscale Meteorological Modelling Capabilities for Air Pollution and Dispersion Applications) and GURME (GAW Urban Research Meteorology and Environment Project), GAW Report No. 181.
Schoppner, M., Plastino, W., Povinec, P., Wotawa, G., Francesco, B., Antonio, B., Vincenzi, M., Ruggieri, F., 2012. Estimation of the time-dependent radioactive source term from the Fukushima nuclear power plant accident using atmospheric transport modeling. J. Environmental Radioactivity, 114, 10–14.
Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2000, Sources and Effects of Ionizing Radiation (Report to the General Assembly, with Scientific Annexes), Vol. II, , United Nation , New York.
Stamoulis, K.C., D. Karamanis, K.G. Ioannides, 2011, Assessment of Tritium Levels in Rivers and Precipitation in North-Western Greece before the ITER operation, Fusion Engineering and Design, 86, 206-213.
Stephen V. Musolino, Joseph DeFranco and Richard Schlueck, THE ALARA PRINCIPLE IN THE CONTEXT OF A RADIOLOGICAL OR NUCLEAR EMERGENCY, Health Physics, 94, No. 2: 109~111; 2008.
Stohl, A., Seibert , P., Wotawa, G., Arnold, D., Burkhart, J. F., Eckhardt, S., Tapia, C., Vargas, A., Yasunari, T. J., 2012. Xenon-133 and caesium-137 releases into the atmosphere from the Fukushima Dai-ichi nuclear power plant: determination of the source term, atmospheric dispersion, and deposition, Atmospheric Chemistry and Physics, 12, 2313–2343.
Suh, K.S., Jeong, H.J., Kim, E.H., Hwang, W.T., Han, M.H., 2006. Verification of the Lagrangian particle model using the ETEX experiment, Annals of Nuclear Energy, 33, 1159–1163.
Sun, X., Shen, S. , Leptoukh, G. G., Wang, P. , Di, L., Lu, M., 2012. Development of a Web-based visualization platform for climate research using Google Earth, Computers & Geosciences, 47, 160-168.
Swiss Center for Life Cycle Inventories, 2013, Ecoinvent Version 3 Database, Available on website: http://www.ecoinvent.com/ .
Terada, H., Katata, G., Chino, M., Nagai, H., 2012. Atmospheric discharge and dispersion of radionuclides during the Fukushima Dai-ichi Nuclear Power Plant accident. Part II: verification of the source term and analysis of regional-scale atmospheric dispersion. J. Environmental Radioactivity, 112, 141-154.
Theodorsson, P., 1999, A review of low-level tritium systems and sensitivity requirements, Applied Radiation Isotopes. 50, 311-316.
Tokyo Electric Power Company (TEPCO) Press Release, 2012, The Estimated Amount of Radioactive Materials Released into the Air and the Ocean Caused by Fukushima Daiichi Nuclear Power Station Accident Due to the Tohoku-Chihou-Taiheiyou-Oki Earthquake (As of May 2012)". TEPCO. Retrieved 24 May 2012.
Tokyo Electric Power Company (TEPCO), 2014, Analysis Results of Groundwater Obtained around Fukushima Daiichi NPS (Unit 1-4 Bank Protection) as of 12:00 AM on October 10, 2014, Tokyo Electric Power Company, available at http://www.tepco.co.jp/en/nu/fukushima-np/f1/smp/2014/images/tb-east_map-e.pdf, accessed October 10, 2014.
The Food and Agriculture Organization of the United Nations (FAO), the International Labour Organisation, (ILO), the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA), the Pan American Health Organization (PAHO), the World Health Organization (WHO) and International Atomic Energy Agency (IAEA), International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources, Safety Series No. 115, IAEA, Vienna (1996).
the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2008, Sources and effects of ionizing radiation- annex D, United Nations , New York.
Theodorsson, P., 1999. A Review of Low-level Tritium Systems and Sensitivity Requirements, Applied Radiation and Isotopes 50. 311-316.
Thiry, Y., Colle, C., Yoschenko, V., Levchuk, S., Hees, M.V., Hurtevent, P. and Kashparov, V., 2009, Impact of Scots pine (Pinus sylvestris L.) plantings on long term 137Cs and 90Sr recycling from a waste burial site in the Chernobyl Red Forest, Journal of Environmental Radioactivity, 100(12), 1062-1068.
Thomas, A.J., Martin, J.M., 1986, First assessment of Chernobyl radioactive plume over Paris, Nature, 321, 817–819.
Tokyo Electric Power Company (TEPCO), 2014, Analysis Results of Groundwater Obtained around Fukushima Daiichi NPS (Unit 1-4 Bank Protection) as of f 12:00 AM on July 4, 2014, Tokyo Electric Power Company, available from http://www.tepco.co.jp/en/nu/fukushima-np/f1/smp/2014/images/tb-east_map-e.pdf.
Tomaszewski, B., 2011. Situation awareness and virtual globes: Applications for disaster management, Computers & Geosciences 37, 86–92.
Twining, .R., C.E. Hughes, J.J. Harrison, S. Hankin, J. Crawford, M. Johansen, L. Dyer, 2011, Biotic, temporal and spatial variability of tritium concentrations in transpirate samples collected in the vicinity of a near-surface low-level nuclear waste disposal site and nearby research reactor, Journal of Environmental Radioactivity, 102, 551-558.
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR), 2000 , SOURCES AND EFFECTS OF IONIZING RADIATION- UNSCEAR 2000 Report to the General Assembly,with scientific annexes, Volume I: SOURCES, available from http://www.unscear.org/unscear/publications/2000_1.html.
U.S. Department of Homeland Security (DHS), 2008, Planning Guidance for Protection and Recovery Following Radiological Dispersal Device (RDD) and Improvised Nuclear Device (IND) Incidents, Federal Register, Vol. 73, No. 149. .
U.S. Environmental Protection Agency, (EPA), 2012, Documentation of the Evaluation of CALPUFF and Other Long Range Transport Models Using Tracer Field Experiment Data, U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, RTP, NC. EPA‐45/R‐12‐003. (available from http://www.epa.gov/ttn/scram/reports/EPA‐454_R‐12‐003.pdf)
V.A Kashparov, S.M Lundin, Yu.V Khomutinin, S.P Kaminsky, S.E Levchuk, V.P Protsak, A.M Kadygrib, S.I Zvarich, V.I Yoschenko and J Tschiersch, 2001, Soil contamination with 90Sr in the near zone of the Chernobyl accident, Journal of Environmental Radioactivity, 56, 3, 285-298.
V.A. Kashparov, S.M. Lundin, S.I. Zvarych, V.I. Yoshchenko, S.E. Levchuk,
Venkatram, A., 1982, A Framework for Evaluating Air Quality Models, Boundary-layer Meteorology, 24, 371-385.
Vetikkoa, V., Rantavaaraa, A. and Moilanen M., 2010, Uptake of 137Cs by berries, mushrooms and needles of Scots pine in peatland forests after wood ash application, Journal of Environmental Radioactivity, 101(12), 1055–1060.
Warwick, P.E., Croudace, I.W., Howard, A. G., 1999. Improved Technique for the Routine determination of Tritiated Water in Aqueous Samples. Analytica Chimica Acta. 382. 225-231.
Whitehead. N.E., Ballestra, S., Holm, E., Walton, A., 1988, Air radionuclide patterns observed at Monaco from the Chernobyl accident, Journal of Environmental Radioactivity, 7, 249–264.
Willmot, C.J., 1982, Some Comments on the Evaluation of Model Performance, Bulletin of the American Meteorological Society, 63, 1309-1313.
Wright, T.E., Burton, M., Pyle, D.M., Caltabiano, T., 2009. Visualizing Volcanic gas plumes with virtual globes, Computers & Geosciences, 35, 1837-1842.
Y.V. Khomutinin, I.M. Maloshtan and V.P. Protsak, 2003, Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout, Science of Total Environment, 317, 105–119.
Yu. A. Izrael, S. M. Vakulovskiy,V.A. Vetrov, V.N. Petrov, F. Ya. Rovynskiy, and D. E. Stukin, 1990, Chernobyl: Radioactive contamination of environment. Leningrad, Russia:Book Company Hydrometeoizdat (in Russian).