研究生: |
廖翊廷 Liao, Yi-Ting |
---|---|
論文名稱: |
利用人物形狀在時間與空間的變化來偵測打滑與跌倒事件 Slip and Fall Detection using Spatiotemporal Characteristics of Human Object for video Surveillance System |
指導教授: |
黃仲陵
Huang, Chung-Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 58 |
中文關鍵詞: | 打滑事件偵測 、跌倒事件偵測 、型態分析 |
外文關鍵詞: | Slip Event Detection, Fall Event Detection, Integrated Spatiotemporal Energy (ISTE) map, Shape Analysis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一個智慧型居家監控安全系統所涵蓋的室內環境裡,異常事件的發生可能與人員的行為相關,也可能無關(如室內環境的異常)。跌倒事件可能造成人員受傷甚至使人員不具有行動能力,老年人跌倒時更是我們需要給予協助的。為了提升看護的醫療品質,降低看護人員因為疲勞所造成的疏失,因此本論文主要偵測人員打滑事件與跌倒事件並發出警訊尋求看護人員的協助。
系統首先分析監視器所拍攝的人員的行為活動,然後判斷是否有打滑的事件發生,倘若人員打滑我們將進一步分析該人員是否有跌倒事件發生,如果是,則即時通告看護人員予以警示並給予其人員適當的協助。在居家環境或老人療養院中,經由攝影機裝置及影像分析的技術,便可以用來偵測環境中的一些危險的動作以及不尋常的行為,比如說,爬樓梯時跌倒與走路時滑倒,這些危險的行為若經由影像分析,便可以即時的通知相關人員,從而避免許多意外的發生。
在本論文中,我們提出Integrated Spatiotemporal Energy (ISTE) map判定受監控的環境之下的人員是否有不尋常的大動作變換。若有大動作的變換我們判定為有可能發生異常事件,利用適合的橢圓代表受監控的人員進而分析該人員的型態,分析該橢圓所具有的參數─ 長軸、短軸、長軸與水平方向的夾角,偵測打滑的事件與跌倒的事件。在實際監視系統裡面,因為影像傳輸的過程中的frame rate不固定,在此情況下利用ISTE map仍能正確定義出該人員的動量變化程度。
Fall and slip of the elderly are the main concerns for home care or day care center. We proposed a method to detect a slip event and a fall event by computing integrated spatiotemporal energy (ISTE) map that includes motion and time of motion occurrence as our motion feature. The extracted human shape is represented by an ellipse that provides crucial information of human motion activities. We use this features to detect the events in the video with non-fixed frame rate. In this work, we assume that the person is on the ground with no or little motion after the fall accident. Our experiments are demonstrated in the indoor and the outdoor scenes, where the illuminate condition varies. So the threshold of the background subtraction and the parameters of the smoothing filter are adjusted independently. Experimental results show that our method is effective for fall and slip detection. The total number of testing frames is about , and we use an Intel Core2 Duo 1.8GHz CPU on a Microsoft Windows XP operating system.
[1] Haritaoglu, I., Harwood, D., Davis, L.S. “W4: Real-Time Survelliance of People and Their Activies”. IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 22, no.8, pp. 809-803, August 2000.
[2] Wren, C.R., Azarbyejani, A., Darrel, T., Pentland, A.P. “Pfinder : Real-Time Tracking of the Human Body”. IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 19, no. 7, pp. 780-785, July 1997.
[3] M. Brand, V. Kettnaker., “Discover and Segmentation of Activities in Video ”. IEEE Trans. On Pattern Analysis and Machine Intelligence, 22(8), p. 844-851, August 2000.
[4] H. Zhong, M. Visontai, J. Shi, “Detecting Unusual Activity in Video” IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 819-826, June 2004.
[5] Anderson, D., Keller, J.M., Skubic, M., Xi Chen, Zhihai He “Recognizing Falls from Silhouettes” IEEE Annual International Conf. on Engineering in Medicine and Biology Society, pp. 6388-6391, August 2006.
[6] B. T oreyin, Y. Dedeoglu, and A. C, etin. “Hmm based falling person detection using both audio and video” In IEEE International Workshop on Human-Computer Interaction, Beijing, China, 2005.
[7] S. -G. Miaou, P.-H. Sung, and C.-Y. Huang “A Customized Human Fall Detection System Using Omni-Camera Images and Personal Information” Proc of Distributed Diagnosis and Home Healthcare (D2H2) Conference, 2006.
[8] R. Cucchiara, A. Pratti, and R. Vezani “An Intelligent Survillance System for Dangerous Situation Detection in home Environments” In Intelligenza artificable, vol. 1, n. 1, pp. 11-15, 2004.
[9] H. Nait-Charif and S. McKenna “Activity summarization and fall detection in a supportive home environment ” In Proceedings of the 17th International Conference on Pattern Recognition (ICPR), vol. 4, pp. 323-326, 2004.
[10] Rougier, C., Meunier, J., St-Arnaud, A., and Rousseau, J. “ Fall Detection from Human Shape and Motion History Using Video Surveillance” Advanced Information Networking and Applications Workshops, 2007, AINAW '07. 21st International Conference, Vol. 2, pp.875 – 880, May 2007.
[11] W. Pratt “Digital Image Processing” 3rd edition, John Wiley & Sons, New York, 2001.
[12] Homa Foroughi, Aabed Naseri, Alireza Saberi, Hadi Sadoghi Yazdi “An Eigenspace-Based Approach for Human Fall Detection using Integrated Time Motion Image and Neural Networka” In IEEE International Conference on Signal Processing Proceeding, April 2008.
[13] Takehito OGATA, JooKooi TAN Seiji ISHIKAWA “High-Speed Human Motion Recognition Based on a Motion History Image and an Eigenspace” IEICE Transactions on Information and Systems, vol. E89-D, Issue 1, pp. 281- 289, January 2006.
[14] A. Jain. “Fundamentals of digital image processing” Prentice Hall, Englewood Cliffs, New Jersey, 1989.
[15] J. Barron, D. Fleet, and S. “Beauchemin. Performance of optical flow techniques” International Journal of Computer Vision, 12(1):43-77, February 1994.
[16] A. Sixsmith and N. Johnson. “A smart sensor to detect the falls of the elderly” IEEE Pervasive Computing, 3(2):42-47, April-June 2004.