研究生: |
李韋杰 Lee, Wei-Jieh |
---|---|
論文名稱: |
不同濃度之4-乙烯基吡啶對共聚物(聚4-乙烯基吡啶及苯乙烯)之影響 The effect of the different concentration of 4-vinylpyridine on the copolymer(poly(4-vinylpyridine-co-styrene)) |
指導教授: |
李三保
Lee, Sanboh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 50 |
中文關鍵詞: | 4-乙烯基吡啶 、聚4-乙烯基吡啶及苯乙烯 、共聚物 、苯乙烯 |
外文關鍵詞: | 4-vinylpyridine, poly(4-vinylpyridine-co-styrene, copolymer, styrene |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們使用不同的兩個單體(4-乙烯基吡啶和苯乙烯)來合成共聚物且變換它們的掺入量來觀察此兩單體的比例對整個共聚物在性質上的影響。因為4-乙烯基吡啶比苯乙烯較具極性,如此共聚物在電性、熱機械性質、光學性質、機械性質上都會因不同的兩單體比例而有所改變。我們自行合成了聚苯乙烯以及共聚物,並藉由紅外光譜儀、凝膠滲透層析儀、元素分析儀、核磁共振儀去分析共聚物中兩單體的比例、化學鍵結以及分子量。之後,我們做了幾種測試來了解兩單體比例不同的共聚物性質。在熱機械分析上,我們知道當4-乙烯基吡啶增加時,熱膨脹係數會減小。藉由硬度測試,我們了解4-乙烯基吡啶增加時硬度也隨之增加。而示差掃描熱卡計測試結果告訴我們玻璃轉換溫度將隨著4-乙烯基吡啶的增加而增加,甚至我們可以用Gordon-Taylor方程式來擬合我們的數據點,藉此得知每種共聚物比例的玻璃轉換溫度。在光學上,折射率會隨著4-乙烯基吡啶的減少而增加,而消光係數則在波長小於500奈米時會驟然增加,那意味著共聚物變的更有吸光性。在介電性質上,低頻區的介電常數會隨著4-乙烯基吡啶的增加而增加,但是在波長範圍400至800奈米時卻會隨著4-乙烯基吡啶的增加而減少。
We introduce different amount of 4-vinylpyridine (4VP) and styrene in the copolymer to observe how the properties vary with the ratio of two monomers. Since the monomer 4VP has more polarity than the styrene, thus the copolymer properties in electric, thermo-mechanical, optical, and mechanical properties of copolymers have changes with different ratios. We synthesize the copolymer and pure polystyrene, and characterize by various measurements containing FTIR, GPC, Elemental Analysis (EA), and NMR to identify the ratio of two monomers in the copolymer, the bonding, and the molecular weight of all the polymers. In the thermo- mechanical property, we can see that the thermal expansion coefficient decreases with increasing 4VP. By the hardness measurement, we know the hardness increases with increasing 4VP. The DSC measurement shows that the glass transition temperature in any ratio fitted by the Gordon-Taylor Equation. The refractive index increases with decreasing 4VP, and the extinction coefficient of copolymers increases abruptly with wavelength less than 500 nm that means copolymers get more absorbing. In the dielectric property, the dielectric constant in the range of low frequency increases with increasing 4VP, but decreases in the wavelength range of 400~800 (nm) with increasing 4VP.
[1] http://en.wikipedia.org/wiki/Polystyrene
[2] 卓宜弘: 對排聚苯乙烯之段式及接枝共聚物之合成與鑑 定。國立中山大學碩士論文(1992)。
[3] K. Sanui, Y. Kiyohara, M. Rikukawa, and N. Ogata: Synthesis of high-performance composites by in situ polycondensation and their mechanical properties. Reactive & Function Polymers. vol 30, pp.293-298, 1996.
[4] Y. Pan, and F. Xue: Lightly sulfonated poly(phenylene oxide)/poly(styrene-co-4-vinylpyridine) blend: interpolymer interaction and miscibility. European Polymer Journal. vol 37, pp.247-249, 2001.
[5] L. Li and C. M. Chan: Specific Interaction between Poly(styrene-co-4-vinylphenol) and Poly(styrene-co-4-vinylpyridine) Studied by X-ray Photoelectron Spectroscopy and Time-of-Flight Secondary Ion Mass Spectrometry. Macromolecules. vol 31, pp.7248-7255, 1998.
[6] S. Poyard, C. Martelet, N. Jaffrezic-Renault, S. Cosnier, and P. Labbe: Association of a poly(4-vinylpyridine -co- styrene) membrane with an inorganic / organic mixed matrix for the optimization of glucose biosensors. Sensors and Actuators B. vol 58, pp.380-383, 1999.
[7] J. R. Ebdon, L. Guisti, B. J. Hunt, and M. S. Jones: The effects of some transition-metal compounds on the flame retardance of poly(styrene-co-4-vinylpyridine) and poly(methyl methacrylate-co-4-vinylpyridine). Polym. Degrad. Stab. vol 60, pp.401-407, 1998.
[8] Y. Wang, L. Feng, and C. Pan: Characterization and Magnetic Properties of P(St-co-4VP) Metal Microspheres. J. Appl. Polym. Sci. vol 70, pp.2307-2312, 1998.
[9] A. I. Hanafy, V. L. Tibbs, K. S. Bisht, and L. J. Ming: Effective heterogeneous hydrolysis of phosphodiester by pyridine-containing metallopolymers. Inorganica Chemica Acta. vol 358, pp.1247-1252, 2005.
[10] P. Guo, W. Guan, L. Liang, and P. Yao: Self-Assembly of
pH-sensitive random copolymers: Poly(styrene-co-4-vinylpyridine).
J. COLLOID INTERFACE SCI. vol 323, pp.229-234, 2008.
[11] F. Borbone, U. Caruso, A. D. Maria, M. Fusco, B. Panunzi, and A. Roviello: (4-vinylpyridine -co- styrene) Copolymer as Host Polymer for Chromophoric Complexes with Potential Second Order Nonlinear Optical Properties. Macromol. Symp. vol 218, pp.313-321, 2004.
[12] L. Meal: Use of Fourier Transform Infrared and Second Derivative
Ultraviolet Spectrometry in Determining Polystyrene-Poly(4-vinylpyridine)
Blend Composition. J. Appl. Polym. Sci. vol 98, pp.2422-2426, 2005.
[13] A. Huang, C. Xiao, and L. Zhuang: Synthesis and Charaterization of Quaternized Poly(4-vinylpyridine -co- styrene) Membranes. J. Appl. Polym. Sci. vol 96, pp.2146-2153, 2005.
[14] H. Ni, G. Ma, M. Nagai, and S. Omi: Effects of Ethyl Acetate soap-free Emulsion Polymerization of 4-vinylpyridine and Styrene. J. Appl. Polym. Sci. vol 80, pp.1988-2001, 2001.
[15] K. H. Wu, Y. R. Wang, and W. H. Hwu: FTIR and TGA studies of poly(4-vinylpyridine -co-divinylbenzene)-Cu(Ⅱ) complex. Polymer Degradation and Stability. vol 79, pp.195-200, 2003.
[16] L. A. Belfiore, A. T. N. Pires, Y. Wang, and H. Graham, and E. Ueda: Transition-metal Coordination in Polymer Blends and Model Systems. Macromolecules. vol 25, pp.1411-1419, 1992.
[17] K. Matyjaszweski: Environmental Aspects of Controlled Radical
Polymerizations. Macromol. Symp. vol 152, pp.29-42, 2000.
[18] D. Colombani: Chain growth control in free radical polymerization. Prog. Polym. Sci. vol 22, pp.1649-1720, 1997.
[19] F. W. Billmeyer: Textbook of Polymer Science 3rd edition, 1984, John Wiley & Sons, New York, N. Y.
[20] G. Khanarian, L. M. Walpita: Transparent polymer compositions having a low thermal expansion coefficient. United States Patent No.5783624, 1996.
[21] S. N. Kasarova, N. G. Sultanova, C. D. Ivanov, and I. D. Nikolov:
Analysis of the dispersion of optical plastic materials. Optical
Materials. vol 29, pp.1481-1490, 2007.
[22] http://en.wikipedia.org/wiki/Ellipsometry
[23] K. Sambasivudu, G. Maheedhar, V.S. Rao, M.V.S. Kumar, and D. Shailaja: Synthesis and Amphiphilic 4-Vinyl Pyridine and n-Vinyl Pyrrolidone Copolymer Beads. J. Appl. Polym. Sci. vol 102, pp.192-197, 2006.
[24] B. J. Gao, Y. X. Lv, and H. F. Jiu: Synthesis and properties of cationic polyacrylamide containing pyridine quaternary salt. Polym. Int. vol 52, pp.1468-1473, 2003.
[25] A. A. Bhutto: Fourier Transform Infrared Anaylsis of Deuterated Polystyrene. J. Res. Sci. vol 14, No.2, pp.261-269, 2003.
[26] H. A. Schneider, J. Rieger, and E. Penzel: The glass transition temperature of random copolymers: 2. Extension of the Gordon-Taylor equation for asymmetric Tg vs composition curves. Polymer. vol 38, No 6, pp.1323-1337, 1997.
[27] http://en.wikipedia.org/wiki/Dielectric_constant
[28] M. S. Wang, J. Weifang, and Z. Liu: Dependence of Ionic Conductivity and Dielectric constant of Amorphous Nonpolar Polymers on Free Volume. Proceeding of the 3rd International Conference on Properties and Applications of Dielectric Materials July 8-12, 1991 Tokyo, Japan.
[29] www.MatWeb.com, Material properties database.
[30] J. A. Woollam Co., Inc. Guide to using WVASE32.
[31] R. M. A. Azzam, N. M. Brashara: Ellipsometry and Polarized Light. 1987.
[32] B. K. Gan, M. M. M. Bilek, A. Kondyurin, K. Mizuno, and D. R. McKenzie: Etching and structural changes in nitrogen plasma immersion ion implanted polystyrene films. Nuclear Instruments and Methods in Physics Reserch B. vol 247, pp.254-260, 2006.
[33] T. K. Chaki and D. K. Khastgir: Effect of frequency and temperature
on dielectric properties of polystyrene at microwave frequencies.
Die Angewandte Makromolekulare Chemie. vol 184, pp.55-68, 1991.