研究生: |
索夫 Saurav Bhattacharjee |
---|---|
論文名稱: |
使用奈米級Fe/SBA-15觸媒探討對油酸於正己烷加壓二氧化碳中加氫脫氧之反應 Hydrodeoxygenation of oleic acid in hexane containing pressurized CO2 using Fe/SBA-15 nanoparticles as catalysts |
指導教授: |
談駿嵩
Tan, Chung-Sung |
口試委員: |
區迪頤
John Ou 陳郁文 Chen, Yu-Wen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 加氫脫氧 、正己烷含加压二氧化碳 、生物燃料 、鐵催化劑 、加氫處理 、表面響應方法 |
外文關鍵詞: | Hydrodeoxygenation, Hexane containing pressurized CO2, Biofuels, Iron catalyst, Hydrotreatment, Response surface methodology |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中使用綠色溶劑將油酸加氫脫氧產生十八烷,實驗結果顯示二氧化碳膨脹正己烷溶劑在對於油酸氫化反應中,對於加氫脫氧反應有較高的選擇率的選擇率能有效的提升,因為脫羧反應必須包括脫去CO2和CO,根據勒沙特列原理,於正庚烷中加入若有CO2則能有效抑制脫羧反應的進行,使加氫脫氧反應的選擇率能有效的提升。
也可以推測正庚烷中的CO2能在此反應中在加氫脫氧扮演重要角色,其一是降低溶劑的黏度,能使得溶液中的觸媒能均勻分散且能讓擴散阻力下降,進一步提升質傳效果;其二是於二氧化碳膨脹正己烷中對氫氣的溶解度較單純使用正己烷高,加入二氧化碳能使更多氫氣與奈米鐵粒子的表面鍵結反應。
在油酸的加氫脫氧反應中,使用實驗設計¬-曲面反應法對三個獨立的操作變數,溫度、二氧化碳壓力、時間和此三者之間的交互作用進行探討於此研究中使用實驗設計¬曲面反應法進行分析,此研究結果顯示這三個變數對於在增加十八烷的產率都是顯著的因子,其中在對降低十七烷 (脫羧反應的主要產物) 的產率中,二氧化碳在系統的分壓力是最重要的操作變數。
The rapid decline of conventional energy sources coupled with a rapid increase in greenhouse gas production and thereby increasing ozone layer depletion and incessant rise in sea levels has ushered in a mad rush for renewable and CO2-neutral energy sources. There has thus been a growing interest for utilizing biomass as an energy source. Biomass derived from agricultural residues and energy crops such as corn are food-competing, and their use is therefore controversial and much debated about. As a result the focus of the industry has now shifted to utilize energy derived from non-food competing biomass feedstocks, such as forest residues and urban wastes. The biomass can be converted to bio-oils through a pyrolysis treatment in absence of oxygen. Biofuels derived from these sources are called second generation biofuels. Pyrolysis bio-oils have, in comparison to petroleum-based fuels, poor chemical properties, due to high water and oxygen content. Further upgrading to remove water and oxygen is needed to improve the bio-oil properties. A hydrotreating reaction to remove oxygen from bio-oils, hydrodeoxygenation (HDO), is carried out in this thesis.
Previous research has shown that iron nanoparticles supported on mesoporous silica nanoparticles (MSN) denoted as (Fe-MSN) catalyzes the hydrotreatment of fatty acids with high selectivity for HDO over decarbonylation and hydrocracking. The catalysis is likely to involve a reverse Mars–Van Krevelen mechanism, in which the surface of iron is partially oxidized by the carboxylic groups of the substrate during the reaction. The strength of the metal–oxygen bonds that are formed affects the residence time of the reactants facilitating the successive conversion of carboxyl first into carbonyl and then into alcohol intermediates, thus dictating the selectivity of the process. The selectivity is also affected by the pretreatment of Fe-MSN, the more reduced the catalyst the higher the yield of HDO product.
For this study the reaction system for the hydrotreatment of oleic acid using supported iron nanoparticles was adopted. Commercial SBA-15 was used as the support for impregnating iron nanoparticles for this study. SBA-15 has a hexagonal symmetry with pore diameters in the range of 5-8 nm and can be a perfect support for immobilization of metal nanoparticles. Also SBA-15 is thermally stable and can retain its structure at high temperatures used for the HDO reactions.
Although HDO reactions are now being studied in detail all over the world, till now there has been no report of the effect of using CO2 alongside H2 while carrying out HDO reactions. The hydrotreatment of oleic acid in a green reaction media to produce the major HDO product octadecane was demonstrated in this thesis. The data show that hexane containing pressurized CO2 could dictate the selectivity of the hydrotreatment of oleic acid with high selectivity for HDO over decarboxylation/decarbonylation. Since the decarboxylation/decarbonylation pathway involves the removal of CO2 and CO, respectively, according to Le Chatelier’s principle, it was hypothesized that hexane containing CO2 could increase the yield of HDO product by preventing the forward reaction for decarboxylation/decarbonylation. It was also speculated that hexane containing pressurized CO2 could offer further beneficial effects on the yield of HDO products. One is that the presence of pressurized CO2 in hexane could reduce the viscosity of the reactant solution. As a result more uniform dispersion of the catalyst occurred in the solution and the diffusion resistances were reduced as well due to the increase in mass transfer. It is also believed that the solubility of H2, the reacting gas was also enhanced in hexane containing CO2 allowing for more H2 to bind to the surface of the iron nanoparticles. The effects of three individual operation variables namely, temperature, CO2 pressure and time and their interactions on the hydrotreatment of oleic acid were studied using a central composite design. The results showed that all these three variables were significant factors for increasing the yield of octadecane while CO2 pressure was the most significant variable in decreasing the yield of heptadecane, the major decarboxylation/decarbonylation product.
1. International Energy Agency, World Outlook, 2009.
2. Maloney, S. Taylor, Francis, 2008, 50, 129–150.
3. Energy Information Agency, International Energy Outlook, 2009.
4. Fisher. K, Beitler. C, Rueter. C, Rochelle. G, Jassim. M, Trimeric Corporation, final report, 2005.
5. G. W. Huber and A. Corma, Angewandte Chemie International Edition, 2007, 46, 7184-7201.
6. D. C. Elliott, Energy & Fuels, 2007, 21, 1792-1815.
7. M. Crocker, RSC Energy and Environment Series, 2010
8. G. W. Huber, S. Iborra and A. Corma, Chemical Reviews, 2006, 106, 4044-4098
9. J. Moulijn, M. Makkee, M. V. Diepen, Wiley Chemical Process Technology, 2013
10. K. Kandel, J. W. Anderegg, N. C. Nelson, U. Chaudhary and I. I. Slowing, Journal of Catalysis, 2014, 314, 142-148.
11. X. Xie, C. L. Liotta and C. A. Eckert, Industrial & Engineering Chemistry Research, 2004, 43, 7907-7911.
12. H. Jin and B. Subramaniam, Chemical Engineering Science, 2004, 59, 4887-4893.
13. C. J. Chang and A. D. Randolph, AIChE Journal, 1990, 36, 939-942.
14. Y.-C. Chen and C.-S. Tan, The Journal of Supercritical Fluids, 2007, 41, 272-278.
15. P. McKendry, Bioresource Technology, 2002, 83, 47-54.
16. A. V. Bridgwater, Chemical Engineering Journal, 2003, 91, 87-102.
17. S. N. Naik, V. V. Goud, P. K. Rout and A. K. Dalai, Renewable and Sustainable Energy Reviews, 2010, 14, 578-597.
18. H. Fukuda, A. Kondo and H. Noda, Journal of Bioscience and Bioengineering, 2001, 92, 405-416.
19. F. Ma and M. A. Hanna, Bioresource Technology, 1999, 70, 1-15.
20. G. Centi, R. A. van Santen, Catalysis for Renewables, Wiley-VCH, 2007
21. S. Czernik and A. V. Bridgwater, Energy & Fuels, 2004, 18, 590-598.
22. A. A. Lappas, M. C. Samolada, D. K. Iatridis, S. S. Voutetakis and I. A. Vasalos, Fuel, 2002, 81, 2087-2095.
23. S. Xiu and A. Shahbazi, Renewable and Sustainable Energy Reviews, 2012, 16, 4406-4414.
24. E. Furimsky, Applied Catalysis A: General, 2000, 199, 147-190.
25. T. V. Choudhary and C. B. Phillips, Applied Catalysis A: General, 2011, 397, 1-12.
26. D. C. Elliott and A. Oasmaa, Energy & Fuels, 1991, 5, 102-109.
27. O. İ. Şenol, E. M. Ryymin, T. R. Viljava and A. O. I. Krause, Journal of Molecular Catalysis A: Chemical, 2007, 277, 107-112.
28. E.-M. Ryymin, M. L. Honkela, T.-R. Viljava and A. O. I. Krause, Applied Catalysis A: General, 2010, 389, 114-121.
29. J. Wildschut, I. Melián-Cabrera and H. J. Heeres, Applied Catalysis B: Environmental, 2010, 99, 298-306.
30. B. S. Gevert, J. E. Otterstedt and F. E. Massoth, Applied Catalysis, 1987, 31, 119-131.
31. N. Shi, Q.-y. Liu, T. Jiang, T.-j. Wang, L.-l. Ma, Q. Zhang and X.-h. Zhang, Catalysis Communications, 2012, 20, 80-84.
32. E. Laurent, A. Centeno and B. Delmon, in Studies in Surface Science and Catalysis, eds. B. Delmon and G. F. Froment, Elsevier, 1994, 88, 573-578.
33. M. Ferrari, A. Centeno, C. Lahousse, R. Maggi, P. Grange and B. Delmon, American Chemical Society Division of Petroleum Chemistry Preprints, 1998, 43, 94.
34. J. B. s. Bredenberg, M. Huuska, J. Räty and M. Korpio, Journal of Catalysis, 1982, 77, 242-247.
35. E. Laurent and B. Delmon, Applied Catalysis A: General, 1994, 109, 97-115.
36. A. Centeno, E. Laurent and B. Delmon, Journal of Catalysis, 1995, 154, 288-298.
37. C. Hargus, R. Michalsky and A. A. Peterson, Energy & Environmental Science, 2014, 7, 3122-3134.
38. H.-W. Lin, C. H. Yen and C.-S. Tan, Green Chemistry, 2012, 14, 682-687.
39. H.-H. Wei, C. H. Yen, H.-W. Lin and C.-S. Tan, The Journal of Supercritical Fluids, 2013, 81, 1-6.
40. H. C. Wu, Y. C. Chang, J. H. Wu, J. H. Lin, I. K. Lin and C. S. Chen, Catalysis Science & Technology, 2015, 5, 4154-4163.
41. D. Xu, R. G. Carbonell, D. J. Kiserow and G. W. Roberts, Industrial & Engineering Chemistry Research, 2005, 44, 6164-6170.
42. Y. Wan and Zhao, Chemical Reviews, 2007, 107, 2821-2860.
43. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science, 1998, 279, 548-552.
44. S. Peng, C. Wang, J. Xie and S. Sun, Journal of the American Chemical Society, 2006, 128, 10676-10677.
45. L.-M. Lacroix, N. Frey Huls, D. Ho, X. Sun, K. Cheng and S. Sun, Nano Letters, 2011, 11, 1641-1645.
46. H. Borchert, E. V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grübel and H. Weller, Langmuir, 2005, 21, 1931-1936.
47. C. S. Goh, H. T. Tan, K. T. Lee and A. R. Mohamed, Fuel Process Technology, 2010, 91, 1146-1151.
48. X. Zhu, X. Tu, D. Mei, C. Zheng, J. Zhou, X. Gao, Z. Luo, M. Ni and K. Cen, Chemosphere, 2016, 155, 9-17.