簡易檢索 / 詳目顯示

研究生: 蔡任豐
Cai, Ren-Fong
論文名稱: 球差校正電子顯微鏡之顯微與能譜分析技術開發
Analytical Techniques for Electron Microscopy and Spectroscopy by Aberration Corrected Scanning Transmission Electron Microscopy
指導教授: 陳健群
Chen, Chien-Chun
口試委員: 羅聖全
朱明文
蘇紘儀
蕭健男
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 79
中文關鍵詞: 球差校正電子顯微鏡影像定性分析電子能量損失能譜光譜機器學習
外文關鍵詞: Aberration Corrected Scanning Transmission Electron Microscopy, Qualitative Electron Imaging, Electron Energy Loss Spectroscopy, Machine Learning
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 球面像差校正掃描穿透式電子顯微鏡逐漸成為材料分析中不可或缺的工具之一,其提供超高解析度;搭配著能譜分析,則可以提供材料研發人員許多寶貴的材料訊息。在本論文中,我們將以半導體材料作為案例,說明如何利用球面像差校正掃描穿透式電子顯微鏡來進行材料微結構分析。
    本論文分為三個部份,分別以磊晶薄膜、二維材料之分析以及機器學習能譜分析開發進行說明。在第一部份中,說明了如何從高分辨原子影像中了解到磊晶薄膜與基板間的相互排列關係、薄膜內應力以及界面原子結構。二維材料分析方面,則會以影像處理的方式,提高影像對比進而提昇原子辨識程度。接著利用ADF影像中原子序對比之應用,進行二維材料中不同元素之定性分析。最後以影像模擬的輔助,判斷材料原子結構。最後一個章節中將介紹一種改良自機器學習演算法之混合能譜分離技術開發與應用,幫助我們自動地從能譜影像中萃取出終端材料能譜,並得到真實的分佈情形。


    Spherical aberration corrected scanning transmission electron microscopy is becoming an indispensable tool for materials analysis. By providing ultra-high resolution, combined with spectroscopy, it provides valuable information to researchers. In this study, we use semiconductor materials as a case study to illustrate how spherical aberration corrected scanning electron microscopes can be used to perform qualitative microstructural analysis of materials.
    In this paper, we divided into three parts. In the first part, we explain how to understand the orientation relationship, what is the internal stresses, and the interfacial atomic structure between epitaxial film and substrate from high-resolution ADF images.
    In the second part, we will focus on the analysis to the 2D materials. Image processing are used to improve the image contrast and then to identify the elements in the image. Then, histogram analysis is used to qualitatively analyze the different elements in the two-dimensional material. Finally, the similar structure of the material is identified with the help of image simulation.
    In the last section, we present the development and application of a hybrid energy spectral separation technique modified from a machine learning algorithm to help us to automatically extract endmembers from spectral images and obtain its distribution.

    誌謝 i 摘要 iii Abstract iv 1 緒論 1 1.1 前 言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 穿透式電子顯微鏡 . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 球面像差校正器 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 本 論 文 架 構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 薄膜材料之分析應用 10 2.1 前 言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 晶向分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 幾 何 相 位 法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 界面原子模型建立 . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 本章小結 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 二維材料之分析應用 19 3.1 前 言 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 二維材料邊緣結構鑑定 20 3.2.1 頻率空間濾波器 20 3.2.2 頻率空間濾波器之優化 - 帶增強濾波器 24 3.2.3 邊緣結構判定 26 3.3 二維材料原子定性分析 29 3.3.1 原子定性分析流程 30 3.3.2 WSe2 / WS2 異質界面影像模擬 34 3.3.3 原子定性分析 35 3.4 二維材料原子結構鑑定 38 3.5 本章小結 43 4 機器學習能譜分析方法開發及應用 44 4.1 前言 44 4.2 混合能譜分解相關技術 47 4.2.1 主成份分析 47 4.2.2 獨立成份分與非負矩陣分解法 48 4.2.3 複線性最小平方擬合 49 4.2.4 群集分析 50 4.3 kMLLS 聚類演算法開發 53 4.3.1 kMLLS 聚類演算法 53 4.3.2 演算法開發與實驗工具 56 4.4 kMLLS 聚類應用案例 58 4.4.1 二元系統 58 4.4.2 三元系統 61 4.4.3 ONO 薄膜分析 63 4.5 本章小結 67 5 結論 68 參考文獻 71

    [1] D. L. McDowell and G. B. Olson, “Concurrent design of hierarchical ma- terials and structures,” Scientific Modeling and Simulation SMNS, vol. 15, pp. 207–240, apr 2008.
    [2] S. R. Kalidindi and M. De Graef, “Materials Data Science: Current Sta- tus and Future Outlook,” Annual Review of Materials Research, vol. 45, pp. 171–193, jul 2015.
    [3] A. Agrawal and A. Choudhary, “Perspective: Materials informatics and big data: Realization of the “fourth paradigm”of science in materials science,” APL Materials, vol. 4, p. 053208, may 2016.
    [4] J. Cross, R. Opila, I. Boyd, and E. Kaufmann, “Materials characterization and the evolution of materials,” MRS Bulletin, vol. 40, pp. 1019–1034, dec 2015.
    [5] D. B. Williams and C. B. Carter, Transmission electron microscopy: A text- book for materials science. Boston, MA: Springer US, 2009.
    [6] T. Vogt, W. Dahmen, and P. Binev, eds., Modeling Nanoscale Imaging in Electron Microscopy. Nanostructure Science and Technology, Boston, MA: Springer US, 2012.
    [7] R. Pérez Campos, A. Contreras Cuevas, and R. Esparza Muñoz, eds., Ma- terials Characterization. Cham: Springer International Publishing, 2015.
    [8] F. L. Deepak, A. Mayoral, and R. Arenal, eds., Advanced Transmission Electron Microscopy. Cham: Springer International Publishing, 2015.
    [9] C. B. Carter and D. B. Williams, eds., Transmission Electron Microscopy. Cham: Springer International Publishing, 2016.
    [10] T. W. Hansen and J. B. Wagner, eds., Controlled Atmosphere Transmission Electron Microscopy. Cham: Springer International Publishing, 2016.
    [11] N. Tanaka, Electron Nano-Imaging. Tokyo: Springer Japan, 2017.

    [12] R. Egerton, Physical Principles of Electron Microscopy. Cham: Springer International Publishing, 2016.
    [13] J. M. Zuo and J. C. Spence, Advanced Transmission Electron Microscopy. New York, NY: Springer New York, 2017.
    [14] S. J. Pennycook and P. D. Nellist, eds., Scanning Transmission Electron Microscopy: Imaging and Analysis. New York: Springer, 2011.
    [15] R. Erni, Aberration-Corrected Imaging in Transmission Electron Mi- croscopy: An Introduction. Danvers: Imperial College Press, 2 ed., 2015.
    [16] M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, and K. Urban, “A spherical-aberration-corrected 200kV transmission electron microscope,” Ultramicroscopy, vol. 75, pp. 53–60, oct 1998.
    [17] N. Dellby, O. L. Krivanek, P. D. Nellist, P. E. Batson, and A. R. Lupini, “Progress in aberration-corrected scanning transmission electron microscopy,” Microscopy, vol. 50, pp. 177–185, may 2001.
    [18] H. Müller, S. Uhlemann, P. Hartel, and M. Haider, “Advancing the Hexapole C s -Corrector for the Scanning Transmission Electron Micro- scope,” Microscopy and Microanalysis, vol. 12, pp. 442–455, dec 2006.
    [19] N. Tanaka, “Present status and future prospects of spherical aberration cor- rected TEM/STEM for study of nanomaterials Science and Technology of Advanced Materials, vol. 9, p. 014111, jan 2008.
    [20] H. Sawada, Y. Tanishiro, N. Ohashi, T. Tomita, F. Hosokawa, T. Kaneyama,
    Y. Kondo, and K. Takayanagi, “STEM imaging of 47-pm-separated atomic columns by a spherical aberration-corrected electron microscope with a 300-kV cold field emission gun,” Journal of Electron Microscopy, vol. 58, pp. 357–361, dec 2009.
    [21] Y. Oshima, H. Sawada, F. Hosokawa, E. Okunishi, T. Kaneyama,
    Y. Kondo, S. Niitaka, H. Takagi, Y. Tanishiro, and K. Takayanagi, “Di- rect imaging of lithium atoms in LiV2O4 by spherical aberration-corrected electron microscopy,” Microscopy, vol. 59, pp. 457–461, dec 2010.
    [22] C. Ricolleau, J. Nelayah, T. Oikawa, Y. Konno, N. Braidy, G. Wang, F. Hüe, and D. Alloyeau, “High resolution imaging and spectroscopy using Cs- corrected TEM with cold FEG JEM–ARM200F,” JEOL News, vol. 47, no. 1, pp. 2–8, 2012.
    [23] D. C. Bell, C. J. Russo, and D. V. Kolmykov, “40keV atomic resolution TEM,” Ultramicroscopy, vol. 114, pp. 31–37, mar 2012.

    [24] F. Hosokawa, H. Sawada, Y. Kondo, K. Takayanagi, and K. Suenaga, “De- velopment of Cs and Cc correctors for transmission electron microscopy,” Microscopy, vol. 62, pp. 23–41, feb 2013.
    [25] R. Shiloh, R. Remez, P.-H. Lu, L. Jin, Y. Lereah, A. H. Tavabi, R. E. Dunin-Borkowski, and A. Arie, “Spherical aberration correction in a scan- ning transmission electron microscope using a sculpted thin film,” Ultra- microscopy, vol. 189, pp. 46–53, jun 2018.
    [26] J. Ltd., “https://www.jeol.co.jp/en.”
    [27] L. B. Young, C.-K. Cheng, G.-J. Lu, K.-Y. Lin, Y.-H. Lin, H.-W. Wan, M.-Y. Li, R.-F. Cai, S.-C. Lo, C.-H. Hsu, J. Kwo, and M. Hong, “Atomic layer deposited single-crystal hexagonal perovskite YAlO 3 epitaxially on GaAs(111)A,” Journal of Vacuum Science & Technology A: Vacuum, Sur- faces, and Films, vol. 35, p. 01B123, jan 2017.
    [28] C. Cheng, L. Young, K. Lin, Y. Lin, H. Wan, G. Lu, M. Chang, R. Cai,
    S. Lo, M. Li, C. Hsu, J. Kwo, and M. Hong, “Single-crystal hexagonal per- ovskite YAlO3 epitaxially on GaAs(111)A and (001) using atomic layer de- position,” Microelectronic Engineering, vol. 178, pp. 125–127, jun 2017.
    [29] L. B. Young, C.-K. Cheng, K.-Y. Lin, Y.-H. Lin, H.-W. Wan, R.-F. Cai, S.-C. Lo, M.-Y. Li, C.-H. Hsu, J. Kwo, and M. Hong, “Epitaxy of High- Quality Single-Crystal Hexagonal Perovskite YAlO 3 on GaAs(111)A Us- ing Laminated Atomic Layer Deposition,” Crystal Growth & Design, vol. 19, pp. 2030–2036, apr 2019.
    [30] Y. Morimoto, Y. Seguchi, and T. Higashi, “Strain analysis by mismatch moire method and grid method using Fourier transform,” Computational Mechanics, vol. 6, no. 1, pp. 1–10, 1990.
    [31] M. Hÿtch, E. Snoeck, and R. Kilaas, “Quantitative measurement of dis- placement and strain fields from HREM micrographs,” Ultramicroscopy, vol. 74, pp. 131–146, aug 1998.
    [32] M. J. Hÿtch, J.-L. Putaux, and J.-M. Pénisson, “Measurement of the dis- placement field of dislocations to 0.03 Å by electron microscopy,” Nature, vol. 423, pp. 270–273, may 2003.
    [33] M. Klinger and A. Jäger, “Crystallographic Tool Box ( CrysTBox ): auto- mated tools for transmission electron microscopists and crystallographers,” Journal of Applied Crystallography, vol. 48, pp. 2012–2018, dec 2015.

    [34] M. Klinger, “More features, more tools, more CrysTBox,” Journal of Ap- plied Crystallography, vol. 50, pp. 1226–1234, aug 2017.
    [35] L. Jones, “Quantitative ADF STEM: acquisition, analysis and interpre- tation,” IOP Conference Series: Materials Science and Engineering, vol. 109, p. 012008, feb 2016.
    [36] S. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, and Y. Ikuhara, “Dynamics of annular bright field imaging in scanning transmission elec- tron microscopy,” Ultramicroscopy, vol. 110, pp. 903–923, jun 2010.
    [37] R. Ishikawa, E. Okunishi, H. Sawada, Y. Kondo, F. Hosokawa, and E. Abe, “Direct imaging of hydrogen-atom columns in a crystal by annular bright- field electron microscopy,” Nature Materials, vol. 10, pp. 278–281, apr 2011.
    [38] A. K. Geim, “Graphene prehistory,” Physica Scripta, vol. T146, p. 014003, jan 2012.
    [39] F. Schwierz, “Graphene transistors,” Nature Nanotechnology, vol. 5, pp. 487–496, jul 2010.
    [40] D. Higgins, P. Zamani, A. Yu, and Z. Chen, “The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress,” Energy & Environmental Science, vol. 9, no. 2, pp. 357–390, 2016.
    [41] A. Nag, A. Mitra, and S. C. Mukhopadhyay, “Graphene and its sensor- based applications: A review,” Sensors and Actuators A: Physical, vol. 270, pp. 177–194, feb 2018.
    [42] H. Zhang, M. Chhowalla, and Z. Liu, “2D nanomaterials: graphene and transition metal dichalcogenides,” Chemical Society Reviews, vol. 47, no. 9, pp. 3015–3017, 2018.
    [43] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides,” Nature Reviews Materials, vol. 2, p. 17033, aug 2017.
    [44] N. Joshi, T. Hayasaka, Y. Liu, H. Liu, O. N. Oliveira, and L. Lin, “A re- view on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides,” Mi- crochimica Acta, vol. 185, p. 213, apr 2018.
    [45] R.-L. Chu, G.-B. Liu, W. Yao, X. Xu, D. Xiao, and C. Zhang, “Spin- orbit-coupled quantum wires and Majorana fermions on zigzag edges of

    monolayer transition-metal dichalcogenides,” Physical Review B, vol. 89, p. 155317, apr 2014.
    [46] A. Arab and Q. Li, “Anisotropic thermoelectric behavior in armchair and zigzag mono- and fewlayer MoS2 in thermoelectric generator applica- tions,” Scientific Reports, vol. 5, p. 13706, nov 2015.
    [47] H.-H. Wu, Q. Meng, H. Huang, C. T. Liu, and X.-L. Wang, “Tuning the indirect–direct band gap transition in the MoS 2−x Se x armchair nanotube by diameter modulation,” Physical Chemistry Chemical Physics, vol. 20, no. 5, pp. 3608–3613, 2018.
    [48] R. C. Gonzalez and R. E. Woods, Digital image processing. Harlow: Pear- son Education Limited, 4 ed., 2018.
    [49] O. L. Krivanek, M. F. Chisholm, V. Nicolosi, T. J. Pennycook, G. J. Corbin,
    N. Dellby, M. F. Murfitt, C. S. Own, Z. S. Szilagyi, M. P. Oxley, S. T. Pan- telides, and S. J. Pennycook, “Atom-by-atom structural and chemical anal- ysis by annular dark-field electron microscopy,” Nature, vol. 464, pp. 571– 574, mar 2010.
    [50] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis. New York, NY: Springer New York, 2018.
    [51] A. De Backer, G. Martinez, A. Rosenauer, and S. Van Aert, “Atom counting in HAADF STEM using a statistical model-based approach: Methodology, possibilities, and inherent limitations,” Ultramicroscopy, vol. 134, pp. 23– 33, nov 2013.
    [52] C. L. Jia, S. B. Mi, J. Barthel, D. W. Wang, R. E. Dunin-Borkowski, K. W. Urban, and A. Thust, “Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image,” Nature Materials, vol. 13, pp. 1044–1049, nov 2014.
    [53] L. Jones, K. E. Macarthur, V. T. Fauske, A. T. Van Helvoort, and P. D. Nellist, “Rapid estimation of catalyst nanoparticle morphology and atomic- coordination by high-resolution Z-contrast electron microscopy,” Nano Letters, vol. 14, no. 11, pp. 6336–6341, 2014.
    [54] G. Martinez, L. Jones, A. De Backer, A. Béché, J. Verbeeck, S. Van Aert, and P. Nellist, “Quantitative STEM normalisation: The importance of the electron flux,” Ultramicroscopy, vol. 159, pp. 46–58, dec 2015.

    [55] X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang,
    Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, and X. Duan, “Lateral epi- taxial growth of two-dimensional layered semiconductor heterojunctions,” Nature Nanotechnology, vol. 9, pp. 1024–1030, dec 2014.
    [56] S. Subramanian, D. D. Deng, K. Xu, N. Simonson, K. Wang, K. Zhang,
    J. Li, R. Feenstra, S. K. Fullerton-Shirey, and J. A. Robinson, “Properties of synthetic epitaxial graphene/molybdenum disulfide lateral heterostruc- tures,” Carbon, vol. 125, pp. 551–556, dec 2017.
    [57] P. K. Sahoo, S. Memaran, Y. Xin, L. Balicas, and H. R. Gutiérrez, “One- pot growth of two-dimensional lateral heterostructures via sequential edge- epitaxy,” Nature, vol. 553, pp. 63–67, jan 2018.
    [58] J. Barthel, “Dr. Probe: A software for high-resolution STEM image simu- lation,” Ultramicroscopy, vol. 193, pp. 1–11, oct 2018.
    [59] R. J. Wu, A. Mittal, M. L. Odlyzko, and K. A. Mkhoyan, “Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM),” Microscopy and Microanalysis, vol. 23, no. 4, pp. 794–808, 2017.
    [60] P. Voyles, D. Muller, and E. Kirkland, “Depth-Dependent Imaging of Indi- vidual Dopant Atoms in Silicon,” Microscopy and Microanalysis, vol. 10, pp. 291–300, apr 2004.
    [61] R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, and M. Pumera, “3R phase of MoS 2 and WS 2 outperforms the corresponding 2H phase for hydrogen evolution,” Chemical Communications, vol. 53, no. 21, pp. 3054–3057, 2017.
    [62] J. Shi, P. Yu, F. Liu, P. He, R. Wang, L. Qin, J. Zhou, X. Li, J. Zhou, X. Sui,
    S. Zhang, Y. Zhang, Q. Zhang, T. C. Sum, X. Qiu, Z. Liu, and X. Liu, “3R MoS 2 with Broken Inversion Symmetry: A Promising Ultrathin Nonlinear Optical Device,” Advanced Materials, vol. 29, p. 1701486, aug 2017.
    [63] K. Tai, C. Huang, R. Cai, G. Huang, Y. Tseng, J. Chen, and W. Wu, “AtomicFewMoS 2 via In Situ Scanning Transmission Electron Microscopy,” Small, vol. 16, p. 1905516, jan 2020.
    [64] J. M. Cowley and A. F. Moodie, “The scattering of electrons by atoms and crystals. I. A new theoretical approach,” Acta Crystallographica, vol. 10, pp. 609–619, oct 1957.

    [65] R. Egerton, Electron Energy-Loss Spectroscopy in the Electron Micro- scope. Boston, MA: Springer US, 2011.
    [66] C. Jeanguillaume and C. Colliex, “Spectrum-image: The next step in EELS digital acquisition and processing,” Ultramicroscopy, vol. 28, pp. 252–257, apr 1989.
    [67] J. A. Hunt and D. B. Williams, “Electron energy-loss spectrum-imaging,”
    Ultramicroscopy, vol. 38, no. 1, pp. 47–73, 1991.
    [68] V. C. Angadi, C. Abhayaratne, and T. Walther, “Automated background subtraction technique for electron energy-loss spectroscopy and application to semiconductor heterostructures,” Journal of Microscopy, vol. 262, no. 2, pp. 157–166, 2016.
    [69] F. Chollet, Deep Learning with Python. Shelter Island: Manning Publica- tions, 1 ed., 2017.
    [70] S. Raschka and V. Mirjalili, Python Machine Learning. Birmingham: Packt Publishing Ltd., 2 ed., 2017.
    [71] N. Keshava and J. Mustard, “Spectral unmixing,” IEEE Signal Processing Magazine, vol. 19, no. 1, pp. 44–57, 2002.
    [72] L. Miao and H. Qi, “Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, pp. 765– 777, mar 2007.
    [73] M. Arngren, M. N. Schmidt, and J. Larsen, “Unmixing of Hyperspec- tral images using bayesian non-negative matrix factorization with volume prior,” Journal of Signal Processing Systems, vol. 65, no. 3, pp. 479–496, 2011.
    [74] D. Rossouw, P. Burdet, F. de la Peña, C. Ducati, B. R. Knappett,
    A. E. H. Wheatley, and P. A. Midgley, “Multicomponent Signal Unmix- ing from Nanoheterostructures: Overcoming the Traditional Challenges of Nanoscale X-ray Analysis via Machine Learning,” Nano Letters, vol. 15, pp. 2716–2720, apr 2015.
    [75] R.-F. Cai, M.-T. Chang, S.-C. Lo, and C.-C. Chen, “Novel spectral un- mixing approach for electron energy-loss spectroscopy,” New Journal of Physics, 2020.

    [76] J. M. Titchmarsh and S. Dumbill, “MULTIVARIATE STATISTICAL ANALYSIS OF FEG-STEM EDX SPECTRA,” Journal of Microscopy, vol. 184, pp. 195–207, dec 1996.
    [77] P. Cueva, R. Hovden, J. A. Mundy, H. L. Xin, and D. A. Muller, “Data Processing for Atomic Resolution Electron Energy Loss Spectroscopy,” Microscopy and Microanalysis, vol. 18, pp. 667–675, aug 2012.
    [78] P. Potapov and A. Lubk, “Optimal principal component analysis of STEM XEDS spectrum images,” Advanced Structural and Chemical Imaging, vol. 5, p. 4, dec 2019.
    [79] F. de la Peña, M. H. Berger, J. F. Hochepied, F. Dynys, O. Stephan, and
    M. Walls, “Mapping titanium and tin oxide phases using EELS: An ap- plication of independent component analysis,” Ultramicroscopy, vol. 111, no. 2, pp. 169–176, 2011.
    [80] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791, 1999.
    [81] N. Wang, B. Du, and L. Zhang, “An endmember dissimilarity constrained non-negative matrix factorization method for hyperspectral unmixing,” IEEE Journal of Selected Topics in Applied Earth Observations and Re- mote Sensing, vol. 6, no. 2, pp. 554–569, 2013.
    [82] N. Gillis, “The why and how of nonnegative matrix factorization,”
    arXiv:1401.5226v2 [stat.ML], 2014.
    [83] H. Shuman and A. P. Somlyo, “Electron energy loss analysis of near- trace-element concentrations of calcium,” Ultramicroscopy, vol. 21, no. 1, pp. 23–32, 1987.
    [84] R. D. Leapman and C. R. Swyt, “Separation of overlapping core edges in electron energy loss spectra by multiple-least-squares fitting,” Ultrami- croscopy, vol. 26, no. 4, pp. 393–403, 1988.
    [85] R. Arenal, F. de la Peña, O. Stéphan, M. Walls, M. Tencé, A. Loiseau, and
    C. Colliex, “Extending the analysis of EELS spectrum-imaging data, from elemental to bond mapping in complex nanostructures,” Ultramicroscopy, vol. 109, no. 1, pp. 32–38, 2008.
    [86] P. M. Voyles, “Informatics and data science in materials microscopy,” Cur- rent Opinion in Solid State and Materials Science, vol. 21, pp. 141–158, jun 2017.

    [87] P. Torruella, M. Estrader, A. López-Ortega, M. D. Baró, M. Varela, F. Peiró, and S. Estradé, “Clustering analysis strategies for electron energy loss spec- troscopy (EELS),” Ultramicroscopy, vol. 185, pp. 42–48, feb 2018.
    [88] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recog- nition Letters, vol. 31, pp. 651–666, jun 2010.
    [89] D. A. Shapiro, Y. S. Yu, T. Tyliszczak, J. Cabana, R. Celestre, W. Chao,
    K. Kaznatcheev, A. L. Kilcoyne, F. Maia, S. Marchesini, Y. S. Meng,
    T. Warwick, L. L. Yang, and H. A. Padmore, “Chemical composition map- ping with nanometre resolution by soft X-ray microscopy,” Nature Pho- tonics, vol. 8, pp. 765–769, oct 2014.
    [90] V. Kumar, J. Heikkonen, P. Engelhardt, and K. Kaski, “Robust filtering and particle picking in micrograph images towards 3D reconstruction of purified proteins with cryo-electron microscopy,” Journal of Structural Bi- ology, vol. 145, pp. 41–51, jan 2004.
    [91] Z. Yang, J. Fang, J. Chittuluru, F. J. Asturias, and P. A. Penczek, “Iterative stable alignment and clustering of 2D transmission electron microscope images,” Structure, vol. 20, pp. 237–247, feb 2012.
    [92] S. Jesse, M. Chi, A. Belianinov, C. Beekman, S. V. Kalinin, A. Y. Bori- sevich, and A. R. Lupini, “Big Data Analytics for Scanning Transmission Electron Microscopy Ptychography,” Scientific Reports, vol. 6, p. 26348, sep 2016.
    [93] 蔡任豐, 張睦東, 羅聖全, and 陳健群, “基於機器學習之 kMLLS 聚類演算法及其在薄膜電子損失譜之應用,” 科儀新知, vol. 222, pp. 79–91, 2020.
    [94] T. H.Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms. Cambridge: The MIT Press, 3 ed., 2009.
    [95] F. de la Peña, E. Prestat, V. T. Fauske, P. Burdet, P. Jokubauskas, M. Nord,
    T. Ostasevicius, K. E. MacArthur, M. Sarahan, D. N. Johnstone, J. Tail- lon, J. Lähnemann, V. Migunov, A. Eljarrat, J. Caron, T. Aarholt, S. Maz- zucco, M. Walls, T. Slater, F. Winkler, Pquinn-dls, B. Martineau, G. Don- val, R. McLeod, E. R. Hoglund, I. Alxneit, D. Lundeby, T. Henninen, L. F. Zagonel, and A. Garmannslund, “hyperspy/hyperspy: HyperSpy v1.5.2,” doi: 10.5281/zenodo.3396791, sep 2019.
    [96] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
    M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

    sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit- learn: Machine Learning in Python,” J. Mach. Learn. Res., vol. 12, pp. 2825–2830, 2011.
    [97] N. K. Menon and O. L. Krivanek, “Synthesis of electron energy loss spectra for the quantification of detection limits,” Microscopy and Microanalysis, vol. 8, pp. 203–215, jun 2002.
    [98] P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G. K. Madsen, and L. D. Marks, “WIEN2k: An APW+lo program for calculating the properties of solids,” The Journal of chemical physics, vol. 152, no. 7, p. 074101, 2020.
    [99] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Num- berical Recipes: The Art of Scientific Computing. Cambridge: Cambridge University Press, 3 ed., 2007.

    QR CODE