簡易檢索 / 詳目顯示

研究生: 李易倫
Li, Yi-Lun
論文名稱: 高效率有機高分子/硫化鉛量子點混合式及串聯式太陽能電池及高分子電子傳輸層之研究
Studies on High Performance Polymer/PbS Quantum Dot Hybrid and Tandem Solar Cells and Polymer Electron Transport Layer
指導教授: 陳壽安
Chen, Show-An
口試委員: 林金福
Lin, King-Fu
華繼中
Hua, Chi-Chung
陳雲
Chen, Yun
郭欽湊
Kuo, Chin-Tsou
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 179
中文關鍵詞: 高分子量子點高分子電子傳輸層太陽能電池串聯式太陽能電池混合式太陽能電池
外文關鍵詞: polymer, quantum dot, polymer electron layer, solar cell, tandem solar cell, hybrid solar cell
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 綠色能源近年來備受矚目,其中汙染最少之太陽能更是一大亮點,高分子材料具有製程簡單且能大面積製作之優點,量子點材料具有成本低廉且易調控能隙之優點,因此高分子與量子點作為吸光材料為最尖端之研究主題,相較於現行市面上的矽基太陽能電池,可望成為最新一代的綠色能源。本研究著墨於高分子及量子點材料應用於太陽能電池中,共分為三個部分。
    第一部分為高分子電子傳輸層之化學結構對高分子太陽能電池之影響,在此研究中設計了一系列水醇可溶解之高分子(PCCn6、PFNCn6、PFCn6及PTCn6)作為太陽能電池之電子傳輸層,並深入探討高分子結構對於元件中界面偶極(interfacial dipole)及光場分佈(optical electric field distribution)的影響,研究中發現高分子之主鏈對於界面偶極的影響高於側鏈,使得主鏈對元件開環電壓之影響較大,其中引入PCCn6作為電子傳輸層獲得的界面偶極最大。在元件光場調控方面,只要引入高分子電子傳輸層,皆能有效將元件內最大光場的區域調整在活性層當中,使活性層可以吸收更多的光而產生較多的光電流,不論使用何種主鏈或側鏈之高分子電子傳輸層,其對元件內的光場影響差異並不大,因為這些高分子之折射率接近所致。更進一步發現PCCn6的引入還能增加整體元件之導電度,再加上界面偶極及調控元件光場之能力,使元件效率高達8.13%,在當時是非常高之效率。
    第二部份為量子點表面處理應用於高分子/量子點串聯式太陽能電池中以提升光電轉換效率,在此部分提出了新穎的表面處理製程,應用於高分子/量子點串聯式太陽能電池中,即是將硫化鉛量子點之薄膜放置於充滿水氣以及氧氣的室溫環境下,研究發現放置在水氣環境中,會使硫化鉛量子點薄膜表面產生亞硫酸鉛及硫酸鉛,然而放置在氧氣環境下則會多產生氧化鉛,這些含鉛化物能降低硫化鉛量子點之間的電子電洞復合機率,進而提高元件之開環電壓及填充因子,然而氧化鉛之導電度遠低於亞硫酸鉛及硫酸鉛,因此硫化鉛量子點在氧氣處理下所得到的元件短路電流會小於水氣處理下的元件短路電流。透過水氣的處理,可使硫化鉛量子點單一接面之太陽能電池的元件效率提升至6.18%,相較於沒有處理的元件,效率提升了1.8倍之多,進一步將水氣處理應用於硫化鉛量子點及PTB7-Th:PC71BM之串聯式太陽能電池中,元件效率可高達9.12%,相較於沒有處理的元件,效率高了1.2倍,且9.12%為目前高分子/量子點串聯式太陽能電池之最高效率。
    第三部分為控制高分子與量子點混合後的形貌,提升高分子/量子點混合式太陽能電池的光電轉換效率,在此部分研究發現當高分子含量較低時,高分子會形成團聚,包覆在量子點的團聚當中,當高分子含量增加,高分子會曝露在量子點的團聚外阻礙量子點間的電荷傳遞,使元件效率低落。進一步添加1 vol%的添加劑於系統中,元件PCE能提升至4.94%,再搭配第一部分所研究之高分子電子傳輸層,再將元件PCE推進至5.26%,此5.26%為目前P3HT/PbS量子點混合式太陽能電池之最高效率。


    Green energy has attracted much attention in recent years. Among them, the least polluted solar energy is a bright spot in green energy. Compared with the current silicon-based solar cells, solar cells with polymer materials have the advantages of simple process and large-area production and those with quantum dot (QD) materials have low cost and easy to adjust their band gaps. Therefore, solar cells with polymers and QDs as light absorbing materials are important advanced research topic in solar cells. It is expected to become the latest generation of green energy. This study is based on the improvent of power conversion efficiency (PCE) in polymer and QD hybrid solar cells, which are divided into three parts.
    The first part: A series of novel electron transport (ET) polymers composed of different conjugated main chains (fluorene, thiophene, and 2,7-carbazole) and crown ether side chain (crown ether, aza-crown ether and amine) is presented for bulk-heterojunction polymer solar cells with poly(3-hexylthiophene) (P3HT) or poly[[4,8-bis[(2-ethylhexyl)oxy]benzo [1,2-b:4,5-b’] dithiophene-2,6-diyl] [3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]](PTB7) as the active polymer and aluminum metal as the cathode. Unexpectedly, it is found that the main chain of ET polymers has a greater effect on the interfacial dipole than the side chain, even when attaching a high polarity group. The electron-rich bridge atom of the main chain may also contribute appreciably to the interfacial dipole. When used as the ET layer, all of these polymers can generate an optical interference effect for redistribution of the optical electric field as an optical spacer and, therefore, allow more light to be absorbed by the active layer, thus leading to an increase in short-circuit current density (JSC). They can also block hole diffusion to the cathode and prevent electron-hole recombination during the ET process. Among the five ET polymers investigated, PCCn6 is the most effective one, providing a remarkable improvement in the PCE (measured in air) of the device to 8.13% compared to 5.20% for PTB7:[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM).
    The second part: we propose new treatments on the PbS QD layer surface by exposing it to air, water vapor and oxygen environments at room temperature. For air, water vapor and oxygen treatments, the lead oxides PbSO3, and PbSO4 are formed at the surface, while for air and oxygen treatments, PbO is additionally formed. These oxides are able to prevent charge recombination between PbS QDs, which results in higher open circuit voltage (VOC) and fill factor (FF) than those without treatment. The absence of lower conductivity oxide PbO in the water vapor treatment leads to JSC higher than those of air and oxygen treatments. In the hybrid tandem solar cell with PTB7-Th:PC71BM as the top cell and PbS QD as the bottom cell, the water vapor treatment leads to a PCE of 9.12%, which is higher than that without treatment (7.37%), with air treatment (8.70%) and oxygen treatment (8.47%). The PCE 9.12% is the new record PCE among the reported polymer QD hybrid tandem solar cells.
    The third part: we found that the weight ratio of polymer blended with QD could affect the morphology of active layer. At a low polymer concentration, the agglomeration of polymer is found to locate within QD aggregate domains. When the concentration of P3HT is high, PbS QD aggregates cannot wrap up P3HT chains and P3HT chains are distributed outside the PbS domains, which results in disturbance of carrier transport pathway in PbS QD phase leading to low PCE. Moreover, addition of 1 vol% anisaldehyde as an additive to active layer (P3HT:OA-PbS) can significantly increase PCE from 4.14% to 4.94%. We introduce the polymer, PCCn6, as the electron transport layer, the device efficiency is further increased from 4.94% to 5.26%. This PCE 5.26% is the world record in P3HT:PbS QD hybrid solar cells.

    目錄 摘要 ii Abstract iv 誌謝 viii 目錄 x 圖目錄 xiv 表目錄 xxii 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池原理 3 1-2-1 太陽光光譜 3 1-2-2 太陽能電池參數 5 1-2-3 太陽能電池運作原理 8 1-3 高分子太陽能電池 10 1-3-1 共軛高分子 10 1-3-2 共軛高分子的電子狀態理論 11 1-3-3 有機太陽能電池結構演進 13 1-4 量子點太陽能電池 16 1-4-1 量子點 16 1-4-2 多重激子生成 18 1-4-3 量子點太陽能電池結構演進 20 1-5 高分子/量子點混合式太陽能電池 21 第二章 文獻回顧 22 2-1 電子傳輸層應用在高分子太陽能電池 22 2-1-1 電子傳輸層之分類 22 2-1-2 高分子電子傳輸層 33 2-1-3 文獻分析 42 2-2 有機/無機混摻型量子點太陽能電池 43 2-2-1 蕭特基接面量子電太陽能電池 43 2-2-2 異質接面量子點太陽能電池 46 2-2-3 高分子/量子點串聯式太陽能電池 54 2-2-4 高分子/量子點混合式太陽能電池 59 2-2-5 文獻分析 74 第三章 研究動機 75 3-1 電子傳輸層之高分子結構對太陽能電池元件之影響 75 3-2 高分子/量子點串聯式及混合式太陽能電池 76 第四章 研究方法 77 4-1 使用藥品及藥品名稱縮寫 77 4-2 材料合成 82 4-2-1 高分子電子傳輸層之合成 82 4-2-2 ZnO/InZnO薄膜製備 90 4-2-3 ZnO奈米粒子之合成 90 4-2-4 PbS量子點合成 91 4-3 儀器設備 92 4-4 太陽能電池元件製作 94 4-4-1 ITO玻璃的清洗 94 4-4-2 順式(conventional type)太陽能電池元件製作 95 4-2-3 反式(inverted type)太陽能電池元件製作 95 4-5 太陽能電池之電性量測 96 第五章 電子傳輸層之高分子其結構對元件的影響 97 5-1 應用於電子傳輸層之高分子基本物性分析 97 5-2 高分子結構對界面偶極(Interfacial Dipole)之影響 99 5-3 高分子結構對元件中光場之影響 101 5-4 高分子ETL對元件效率之影響 108 5-5 結論 112 第六章 高分子/量子點串聯式太陽能電池 113 6-1 PbS量子點薄膜置換ligand前後的光學性質 113 6-2 PbS 量子點薄膜的表面處理 114 6-3 PbS量子點與高分子串聯式太陽能電池之研究 123 6-4 結論 132 第七章 高分子/量子點混合式太陽能電池 133 7-1 P3HT與PbS量子點的混合比例對元件的影響 133 7-2 低能隙高分子取代P3HT作為混合式太陽能電池活性層 141 7-3 添加劑應用於P3HT:PbS系統之研究 146 7-4 不同ligand的PbS量子點與P3HT混合之研究 152 7-5 添加有機小分子或碳球衍生物作為活性層之電子受體 159 7-6 電子傳輸層應用於混合式太陽能電池 161 7-7 結論 165 第八章 總結 166 Reference 168 著作目錄 178

    Reference
    1. Best Research-Cell Efficiencies. 2017; Available from: https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
    2. J.A. Herron, J. Kim, A.A. Upadhye, G.W. Huber, and C.T. Maravelias, "A general framework for the assessment of solar fuel technologies". Energy & Environmental Science. 8: p. 126-157 (2015).
    3. A. Materials. Introduction to Solar Radiation. Available from: https://www.newport.com/t/introduction-to-solar-radiation.
    4. X. Yang and J. Loos, "Toward High-Performance Polymer Solar Cells: The Importance of Morphology Control". Macromolecules. 40: p. 1353-1362 (2007).
    5. H. Hoppe and N.S. Sariciftci, "Morphology of polymer/fullerene bulk heterojunction solar cells". Journal of Materials Chemistry. 16: p. 45-61 (2006).
    6. G. Li, V. Shrotriya, Y. Yao, and Y. Yanga, "Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)". Journal of Applied Physics. 98: p. 043704 (2005).
    7. D. Chirvase, J. Parisi, J.C. Hummelen, and V. Dyakonov, "Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites". Nanotechnology. 15: p. 1317-1323 (2004).
    8. V.D. Mihailetchi, L.J.A. Koster, and P.W.M. Blom, "Effect of metal electrodes on the performance of polymer:fullerene bulk heterojunction solar cells". Applied Physics Letters. 85: p. 970-972 (2004).
    9. C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, and J.C. Hummelen, "Origin of the Open Circuit Voltage of Plastic Solar Cells". Advanced Functional Materials. 11: p. 374 (2001).
    10. C. Deibel and V. Dyakonov, "Polymer-fullerene bulk heterojunction solar cells". Reports on Progress in Physics. 73: p. 096401 (2010).
    11. M. Knupfer, "Exciton binding energies in organic semiconductors". Applied Physics A. 77: p. 623-626 (2003).
    12. K.L. Shaklee and R.E. Nahory, "VALLEY-ORBIT SPLITTING OF FREE EXCITONS'? THE ABSORPTION EDGE OF Si". Physcal Review Letters. 24: p. 942 (1970).
    13. P.E. Shaw, A. Ruseckas, and I.D.W. Samuel, "Exciton Diffusion Measurements in Poly(3-hexylthiophene)". Advanced Materials. 20: p. 3516-3520 (2008).
    14. A. Haugeneder, M. Neges, C. Kallinger, W. Spirkl, U. Lemmer, J. Feldmann, U. Scherf, E. Harth, A. Gu¨gel, and K. Mu¨llen, "Exciton diffusion and dissociation in conjugated polymer/fullerene blends and heterostructures". Physical Review B. 59: p. 15346 (1999).
    15. M. Theander, A. Yartsev, D. Zigmantas, V. Sundstro¨m, W. Mammo, M.R. Andersson, and O. Ingana¨s, "Photoluminescence quenching at a polythiophene/C60 heterojunction". Physical Review B. 61: p. 12957 (2000).
    16. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, and F. Wudi, "Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene". Science. 258: p. 1474 (1992).
    17. J.C.W. Chien, Polyacetylene : Chemistry, Physics, and Material Science. 1984: Oxford : Elsevier Science.
    18. K.M. Coakley and M.D. McGehee, "Conjugated Polymer Photovoltaic Cells". Chemistry of Materials. 16: p. 4533-4542 (2004).
    19. H. Hoppe and N.S. Sariciftci, Polymer Solar Cells. Advances in Polymer Science, ed. A. Abe, et al. Vol. 214. 2008.
    20. C.W. Tang, "Two-layer organic photovoltaic cell". Applied Physics Letters. 48: p. 183 (1986).
    21. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger, "Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions". Science. 270(5243): p. 1789-1791 (1995).
    22. W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Heeger, "Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology". Advanced Functional Materials. 15: p. 1617-1622 (2005).
    23. G. Li, V. Shrotriya, Y. Yao, and Y. Yang, "Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)". Journal of Applied Physics. 98 (2005).
    24. F. Padinger, R.S. Rittberger, and N.S. Sariciftci, "Effects of Postproduction Treatment on Plastic Solar Cells". Advanced Functional Materials. 13: p. 85-88 (2003).
    25. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, "High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends". Nature Materials. 4: p. 864-868 (2005).
    26. X. Guo, M. Zhang, J. Tan, S. Zhang, L. Huo, W. Hu, Y. Li, and J. Hou, "Infl uence of D/A Ratio on Photovoltaic Performance of a Highly Effi cient Polymer Solar Cell System". Advanced Functional Materials. 24: p. 6536-6541 (2012).
    27. A.J. Moulé and K. Meerholz, "Controlling Morphology in Polymer-Fullerene Mixtures". Advanced Materials. 20: p. 240-245 (2008).
    28. J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, and G.C. Bazan, "Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols". Nature Materials. 6: p. 497-500 (2007).
    29. J. Peet, C. Soci, R.C. Coffin, T.Q. Nguyen, A. Mikhailovsky, D. Mosesa, and G.C. Bazan, "Method for increasing the photoconductive response in conjugated polymer/fullerene composites". Applied Physics Letters. 89: p. 252105 (2006).
    30. Y. Yao, J. Hou, Z. Xu, G. Li, and Y. Yang, "Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells". Advanced Functional Materials. 18: p. 1783-1789 (2008).
    31. J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, and H. Yan, "Efficient organic solar cells processed from hydrocarbon solvents". Nature Energy. 1 (2016).
    32. S. Zhang, Y. Qin, J. Zhu, and J. Hou, "Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor". ACS Nano, (2015).
    33. H. Hogan. Lasers Gone Dotty. 2011; Available from: https://www.photonics.com/Article.aspx?AID=45916.
    34. W. Shockley and H.J. Queisser, "Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells". Journal of Applied Physics. 32: p. 510 (1961).
    35. R.D. Schaller, M. Sykora, J.M. Pietryga, and V.I. Klimov, "Seven Excitons at a Cost of One: Redefining the Limits for Conversion Efficiency of Photons into Charge Carriers". Nano Letters. 6: p. 424-429 (2006).
    36. C. Piliego, L. Protesescu, S.Z. Bisri, M.V. Kovalenko, and M.A. Loi, "5.2% efficient PbS nanocrystal Schottky solar cells". Energy & Environmental Science. 6: p. 3054-3059 (2013).
    37. M.-J. Choi, S. Kim, H. Lim, J. Choi, D.M. Sim, S. Yim, B.T. Ahn, J.Y. Kim, and Y.S. Jung, "Highly Asymmetric n + -p Heterojunction Quantum-Dot Solar Cells with Significantly Improved Charge-Collection Efficiencies". Advanced Materials. 28: p. 1780-1787 (2016).
    38. O. Voznyy, D. Zhitomirsky, P. Stadler, Z. Ning, S. Hoogland, and E.H. Sargent, "A Charge-Orbital Balance Picture of Doping in Colloidal Quantum Dot Solids". ACS Nano. 6(9): p. 8448-8455 (2012).
    39. A.G. Pattantyus-Abraham, I.J. Kramer, A.R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina, I. Raabe, M.K. Nazeeruddin, M.G. tzel, and E.H. Sargent, "Depleted-Heterojunction Colloidal Quantum Dot Solar Cells". ACS Nano. 4: p. 3374 (2010).
    40. J. Tang, H. Liu, D. Zhitomirsky, S. Hoogland, X. Wang, M. Furukawa, L. Levina, and E.H. Sargent, "Quantum Junction Solar Cells". Nano Letters. 12: p. 4889-4894 (2012).
    41. C.J. Brabec, S.E. Shaheen, C. Winder, N.S. Sariciftci, and P. Denk, "Effect of LiF/metal electrodes on the performance of plastic solar cells". Applied Physics Letters. 80 (2002).
    42. X. Jiang, H. Xu, L. Yang, M. Shi, M. Wang, and H. Chen, "Effect of CsF interlayer on the performance of polymer bulk heterojunction solar cells". Solar Energy Materials & Solar Cells. 93: p. 650-653 (2009).
    43. J.Y. Kim, S.H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong, and A.J. Heeger, "New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer". Advanced Materials. 18: p. 572-576 (2006).
    44. "Enhancing the Electrical and Optoelectronic Performance of Nanobelt Devices by Molecular Surface Functionalization". Nano Letters. 7(5): p. 1323-1328 (2007).
    45. J. Gilot, I. Barbu, M.M. Wienk, and R.A. Janssen, "The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study". Applied Physics Letters. 91: p. 113520 (2007).
    46. S.-H. Liao, H.-J. Jhuo, Y.-S. Cheng, and S.-A. Chen, "Fullerene Derivative-Doped Zinc Oxide Nanofilm as the Cathode of Inverted Polymer Solar Cells with Low-Bandgap Polymer (PTB7-Th) for High Performance". Advanced Materials. 25: p. 4766 (2013).
    47. T.C. Monson, M.T. Lloyd, D.C. Olson, Y.J. Lee, and J.W.P. Hsu, "Photocurrent Enhancement in Polythiophene‐ and Alkanethiol‐Modified ZnO Solar Cells". Advanced Materials. 20: p. 4755-4759 (2008).
    48. S.K. Hau, Y.-J. Cheng, H.-L. Yip, Y. Zhang, H. Ma, and A.K.-Y. Jen, "Effect of Chemical Modification of Fullerene-Based Self-Assembled Monolayers on the Performance of Inverted Polymer Solar Cells". ACS Applied Materials & Interfaces 2(7): p. 1892-1902 (2010).
    49. Y.-S. Cheng, S.-H. Liao, Y.-L. Li, and S.-A. Chen, "Physically Adsorbed Fullerene Layer on Positively Charged Sites on Zinc Oxide Cathode Affords Efficiency Enhancement in Inverted Polymer Solar Cell". ACS Applied Materials & Interfaces. 5: p. 6665-6671 (2013).
    50. C.-H. Hsieh, Y.-J. Cheng, P.-J. Li, C.-H. Chen, M. Dubosc, R.-M. Liang, and C.-S. Hsu, "Highly Efficient and Stable Inverted Polymer Solar Cells Integrated with a Cross-Linked Fullerene Material as an Interlayer". Journal of the american chemical society. 132(13): p. 4887-4893 (2010).
    51. K. Yao, L. Chen, Y. Chen, F. Li, and P. Wang, "Influence of water-soluble polythiophene as an interfacial layer on the P3HT/PCBM bulk heterojunction organic photovoltaics". Journal of Materials Chemistry. 21: p. 13780-13784 (2011).
    52. J.H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A.J. Heeger, and G.C. Bazan, "Improved High-Efficiency Organic Solar Cells via Incorporation of a Conjugated Polyelectrolyte Interlayer". Journal of the american chemical society. 133: p. 8416-8419 (2011).
    53. X. XU, W. CAI, J. CHEN, and Y. CAO, "Conjugated Polyelectrolytes and Neutral Polymers with Poly(2,7-carbazole) Backbone: Synthesis, Characterization, and Photovoltaic Application". Journal of Polymer Science Part A: Polymer Chemistry. 49: p. 1263-1272 (2011).
    54. Y. Zhao, Z. Xie, C. Qin, Y. Qu, Y. Geng, and L. Wang, "Enhanced charge collection in polymer photovoltaic cells by using an ethanol-soluble conjugated polyfluorene as cathode buffer layer". Solar Energy Materials and Solar Cells. 93: p. 604 (2009).
    55. S.-H. Oh, S.-I. Na, J. Jo, B. Lim, D. Vak, and D.-Y. Kim, "Water-Soluble Polyfluorenes as an Interfacial Layer Leading to Cathode-Independent High Performance of Organic Solar Cells". Advanced Functional Materials. 20: p. 1977-1983 (2010).
    56. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, and Y. Cao, "Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells". Advanced Materials. 23: p. 4636-4643 (2011).
    57. H.-H. Lu, Y.-S. Ma, N.-J. Yang, G.-H. Lin, Y.-C. Wu, and S.-A. Chen, "Creating a Pseudometallic State of K+ by Intercalation into 18-Crown-6 Grafted on Polyfluorene as Electron Injection Layer for High Performance PLEDs with Oxygen- and Moisture-Stable Al Cathode". Journal of the american chemical society. 133: p. 9634-9637 (2011).
    58. S.-H. Liao, Y.-L. Li, T.-H. Jen, Y.-S. Cheng, and S.-A. Chen, "Multiple Functionalities of Polyfluorene Grafted with Metal Ion-Intercalated Crown Ether as an Electron Transport Layer for Bulk-Heterojunction Polymer Solar Cells: Optical Interference, Hole Blocking, Interfacial Dipole, and Electron Conduction". Journal of the American Chemical Society. 134: p. 14271 (2012).
    59. Z. Hens and I. Moreels, "Light absorption by colloidal semiconductor quantum dots". Journal of Materials Chemistry. 22: p. 10406-10415 (2012).
    60. F.W. WISE, "Lead Salt Quantum Dots: the Limit of Strong Quantum Confinement". Accounts of Chemical Research. 33: p. 773-780 (2000).
    61. I. Moreels, K. Lambert, D. Smeets, D.D.M.T. Nollet, J.C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, and Z. Hens, "Size-Dependent Optical Properties of Colloidal PbS Quantum Dots". ACS Nano. 3(10): p. 3023-3030 (2009).
    62. J. Tang, L. Brzozowski, D.A.R. Barkhouse, X. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A.G. Pattantyus-Abraham, D. Jamakosmanovic, and E.H. Sargent, "Quantum Dot Photovoltaics in the Extreme Quantum Confinement Regime: The Surface-Chemical Origins of Exceptional Air- and Light-Stability". ACS Nano. 4(2): p. 869-878 (2010).
    63. P. Eadington, The Oxidation of Lead Sulfide in Aqueous Suspensions, in The University of Lodon. 1969, Lodon.
    64. G. Konstantatos, L. Levina, A. Fischer, and E.H. Sargent, "Engineering the Temporal Response of Photoconductive Photodetectors via Selective Introduction of Surface Trap States". Nano Letters. 8(5): p. 1446-1450 (2008).
    65. P.R. Brown, D. Kim, R.R. Lunt, N. Zhao, M.G. Bawendi, J.C. Grossman, and V. Bulovi, "Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange". ACS Nano. 8(6): p. 5863-5872 (2014).
    66. J. Tang, X. Wang, L. Brzozowski, D.A.R. Barkhouse, R. Debnath, L. Levina, and E.H. Sargent, "Schottky Quantum Dot Solar Cells Stable in Air under Solar Illumination". Advanced Materials. 22: p. 1398-1402 (2010).
    67. K.S. Jeong, J. Tang, H. Liu, J. Kim, A.W. Schaefer, K. Kemp, L. Levina, XihuaWang, S. Hoogland, R. Debnath, L. Brzozowski, E. Sargent, and J. Asbury, "Enhanced Mobility-Lifetime Products in PbS Colloidal Quantum Dot Photovoltaics". ACS Nano. 6(1): p. 89-99 (2012).
    68. H. Liu, J. Tang, I.J. Kramer, R. Debnath, G.I. Koleilat, X. Wang, A. Fisher, R. Li, L. Brzozowski, L. Levina, and E.H. Sargent, "Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells". Advanced Materials. 23: p. 3832-3837 (2011).
    69. J. Tang, K. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, XihuaWang, R. Debnath, D. Cha, K. Chou, A. Fischer, A. Amassian, J.B. Asbury, and E.H. Sargent, "Colloidal-quantum-dot photovoltaics using atomic-ligand passivation". Nature Materials. 10 (2011).
    70. B. Kundu and A.J. Pal, "Ligand-Mediated Energy-Level Modification in PbS Quantum Dots as Probed by Density of States (DOS) Spectra". The Journal of Physical Chemistry C. 122(21): p. 11570-11576 (2018).
    71. Z.J. Ning, D. Zhitomirsky, V. Adinolfi, B. Sutherland, J.X. Xu, O. Voznyy, P. Maraghechi, X.Z. Lan, S. Hoogland, Y. Ren, and E.H. Sargent, "Graded Doping for Enhanced Colloidal Quantum Dot Photovoltaics". Advanced Materials. 25(12): p. 1719-1723 (2013).
    72. C.-H.M. Chuang, P.R. Brown, V. Bulović, and M.G. Bawendi, "Improved performance and stability in quantum dot solar cells through band alignment engineering". Nature Materials. 13: p. 796-801 (2014).
    73. X. Lan, O. Voznyy, A. Kiani, F.P.G.d. Arquer, A.S. Abbas, G.-H. Kim, M. Liu, Z. Yang, G. Walters, J. Xu, M. Yuan, Z. Ning, F. Fan, P. Kanjanaboos, I. Kramer, D. Zhitomirsky, P. Lee, A. Perelgut, S. Hoogland, and E.H. Sargent, "Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance". Advanced Materials. 28: p. 299-304 (2016).
    74. X. Lan, O. Voznyy, F.P.G.d. Arquer, M. Liu, J. Xu, A.H. Proppe, G. Walters, F. Fan, H. Tan, M. Liu, Z. Yang, S. Hoogland, and E.H. Sargent, "10.6% Certified Colloidal Quantum Dot Solar Cells via Solvent-Polarity-Engineered Halide Passivation". Nano Letters. 16: p. 4630-4634 (2016).
    75. M.J. Speirs, B.G.H.M. Groeneveld, L. Protesescu, C. Piliego, M.V. Kovalenko, and M.A. Loi, "Hybrid inorganic–organic tandem solar cells for broad absorption of the solar spectrum". Physical Chemistry Chemical Physics. 16: p. 7672-7676 (2014).
    76. T. Kim, Y. Gao, H. Hu, B. Yana, Z. Ning, L.K. Jagadamma, K. Zhao, A.R. Kirmani, J. Eid, M.M. Adachi, E.H. Sargent, P.M. Beaujuge, and A. Amassian, "Hybrid tandem solar cells with depleted-heterojunction quantum dot and polymer bulk heterojunction sub cells". Nano Energy. 17: p. 196-205 (2015).
    77. J. Seo, M.J. Cho, D. Lee, A.N. Cartwright, and P.N. Prasad, "Efficient Heterojunction Photovoltaic Cell Utilizing Nanocomposites of Lead Sulfi de Nanocrystals and a Low-Bandgap Polymer". Advanced Materials. 23: p. 3984-3988 (2011).
    78. M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, and C.J. Brabec, "Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10% Energy-Conversion Efficiency". Advanced Materials. 18: p. 789-794 (2006).
    79. G. Itskos, P. Papagiorgis, D. Tsokkou, A. Othonos, F. Hermerschmidt, S.P. Economopoulos, M. Yarema, W. Heiss, and S. Choulis, "Size-Dependent Charge Transfer in Blends of PbS Quantum Dots with a Low-Gap Silicon-Bridged Copolymer ". Advanced Energy Materials. 3: p. 1490-1499 (2013).
    80. M. Nam, J. Park, S.W. Kim, and K. Lee, "Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a low-bandgap polymer". Journal of Materials Chemistry A. 2(11): p. 3978-3985 (2014).
    81. J.Y. Yuan, A. Gallagher, Z.K. Liu, Y.X. Sun, and W.L. Ma, "High-efficiency polymer-PbS hybrid solar cells via molecular engineering". Journal of Materials Chemistry A. 3(6): p. 2572-2579 (2015).
    82. M. Nam, J. Park, S.-W. Kim, and K. Lee, "Broadband-absorbing hybrid solar cells with efficiency greater than 3% based on a bulk heterojunction of PbS quantum dots and a lowbandgap polymer". Journal of Materials Chemistry A. 2: p. 3978-3985 (2014).
    83. R. Zhou, R. Stalder, D. Xie, W. Cao, Y. Zheng, Y. Yang, M. Plaisant, P.H. Holloway, K.S. Schanze, J.R. Reynolds, and J. Xue, "Enhancing the Efficiency of Solution-Processed Polymer:Colloidal Nanocrystal Hybrid Photovoltaic Cells Using Ethanedithiol Treatment". ACS Nano. 7(6): p. 4846 (2013).
    84. W.F. Fu, Y. Shi, W.M. Qiu, L. Wang, Y.X. Nan, M.M. Shi, H.Y. Li, and H.Z. Chen, "High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols". Physical Chemistry Chemical Physics. 14(35): p. 12094-12098 (2012).
    85. W.F. Fu, L. Wang, Y.F. Zhang, R.S. Ma, L.J. Zuo, J.Q. Mai, T.K. Lau, S.X. Du, X.H. Lu, M.M. Shi, H.Y. Li, and H.Z. Chen, "Improving Polymer/Nanocrystal Hybrid Solar Cell Performance via Tuning Ligand Orientation at CdSe Quantum Dot Surface". Acs Applied Materials & Interfaces. 6(21): p. 19154-19160 (2014).
    86. Z. Liu, Y. Sun, J. Yuan, H. Wei, X. Huang, L. Han, W. Wang, H. Wang, and W. Ma, "High-Efficiency Hybrid Solar Cells Based on Polymer/PbSxSe1-x Nanocrystals Benefiting from Vertical Phase Segregation". Advanced Materials. 25: p. 5772-5778 (2013).
    87. H. Zhou, Y. Zhang, J. Seifter, S.D. Collins, C. Luo, G.C. Bazan, T.-Q. Nguyen, and A.J. Heeger, "High-Effi ciency Polymer Solar Cells Enhanced by Solvent Treatment". Advanced Materials. 25: p. 1646-1652 (2013).
    88. H.H. Lu, Y.S. Ma, N.J. Yang, G.H. Lin, Y.C. Wu, and S.A. Chen, "Creating a Pseudometallic State of K+ by Intercalation into 18-Crown-6 Grafted on Polyfluorene as Electron Injection Layer for High Performance PLEDs with Oxygen- and Moisture-Stable Al Cathode". Journal of the American Chemical Society. 133(25): p. 9634-9637 (2011).
    89. F. Huang, H.B. Wu, D. Wang, W. Yang, and Y. Cao, "Novel electroluminescent conjugated polyelectrolytes based on polyfluorene". Chemistry of Materials. 16(4): p. 708-716 (2004).
    90. M.-J. Choi, J. Oh, J.-K. Yoo, J. Choi, D.M. Sima, and Y.S. Jung, "Tailoring of the PbS/metal interface in colloidal quantum dot solar cells for improvements of performance and air stability". Energy & Environmental Science. 7: p. 3052-3060 (2014).
    91. S.-H. Liao, H.-J. Jhuo, P.-N. Yeh, Y.-S. Cheng, Y.-L. Li, Y.-H. Lee, S. Sharma, and S.-A. Chen, "Single Junction Inverted Polymer Solar Cell Reaching Power Conversion Efficiency 10.31% by Employing Dual-Doped Zinc Oxide Nano-Film as Cathode Interlayer". Scientific Reports. 4: p. 6813 (2014).
    92. N. Zhao, T.P. Osedach, L.-Y. Chang, S.M. Geyer, D. Wanger, M.T. Binda, A.C. Arango, M.G. Bawendi, and V. Bulovic, "Colloidal PbS Quantum Dot Solar Cells with High Fill Factor". ACS Nano. 4(7): p. 3743-3752 (2010).
    93. N.Saidi, H.Saidi, B.Saidani, and S.P.Stoylov, "Dependence of the electric field on the specific surface conductivity of PbO2,, 3PbO · PbSO4 and 4PbO · PbSO4". Journal of Power Sources. 1987: p. 61-64 (1997).
    94. Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T.P. Russell, and Y. Cao, "Single-junction polymer solar cells with high efficiency and photovoltage". Nature Photonics. 9: p. 174 (2015).
    95. P.-N. Yeh, S.-H. Liao, Y.-L. Li, H.-R. Syue, and S.-A. Chen, "Large active area inverted tandem polymer solar cell with high performance via alcohol treatment on the surface of bottom active layer P3HT:ICBA". Solar Energy Materials & Solar Cells. 128: p. 240-247 (2014).
    96. S. Sista, M.-H. Park, Z. Hong, Y. Wu, J. Hou, W.L. Kwan, G. Li, and Y. Yang, "Highly Efficient Tandem Polymer Photovoltaic Cells". Advanced Materials. 22: p. 380-383 (2010).
    97. W.-J. Ke, G.-H. Lin, C.-P. Hsu, C.-M. Chen, Y.-S. Cheng, T.-H. Jen, and S.-A. Chen, "Solution processable self-doped polyaniline as hole transport layer for inverted polymer solar cells". Journal of Materials Chemistry. 21: p. 13483-13489 (2011).


    QR CODE