研究生: |
孫宏維 Sun, Hung-Wei |
---|---|
論文名稱: |
緊聚焦下的高次協波之相位匹配 Phase Matching of High Harmonic Generation in Tight Focusing Geometry |
指導教授: |
陳明彰
Chen, Ming-Chang |
口試委員: |
朱旭新
Chu, Hsu-Hsin 羅志偉 Luo, Chih-Wei |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 62 |
中文關鍵詞: | 同調極紫外光 、高次協波 、相位匹配 |
外文關鍵詞: | EUV, HHG, Phase matching |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透過強烈的非線性效應,高次協波產生能提供飛秒甚至埃秒的極紫外光或軟X射線的同調光源。然而,在這個過程中,雷射產生的自由電子不僅會影響基頻雷射的相位還會產生自發散效應,進而限制高次協波產生的光子能量僅存在相對小的協波基數。在這篇論文中,我們成功的利用短聚焦的方式延展高次協波的截止能量。我們觀察到400倍量的65電子伏特的協波在0.8毫米的氬氣氣體管中。除此之外,我們可以利用光圈去調控高次協波頻譜的中心位置。透過數值計算,我們發現這個僅聚焦下的相位匹配主要是透過利用高次協波的內在相位。這個高強度的60電子伏特的光源可以被用於許多磁性材料或是材料選擇性的超快動態實驗。
High order harmonic generation (HHG) is a unique and extreme nonlinear effect, providing coherent radiation in EUV or soft X-ray region with femto-to-attosecond duration. However, the laser-induced free electrons will induce not only the dephasing effect but also the spatial defocusing, limiting observable photon energy of HHG in low energy harmonics only. In this thesis, we realized an extension of HHG cutoff in a tight focusing geometry. A 400-fold enhancement of 65 eV harmonics in argon-filled gas cell is observed in a 0.8 mm gas cell. Furthermore, by using an iris to truncate the laser beam, the central photon energy of harmonic spectrum can be selected. We demonstrated a wide tunability of harmonics from ≈ 35 to ≈70 eV in a 1.2 mm gas cell. Based on our numerical calculations, this phase matching process in tight focusing geometry is assisted by the wavevector mismatch from the intrinsic phase. This new phase matching technique provides an opportunity to extend the phase matching cutoff. Such bright, coherent light source around 60 eV can be applied for coherent image and experiments of ultrafast, element selective dynamic.
[1] P. B.Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett., vol. 71, no. 13, pp. 1994–1997, 1993.
[2] J. L.Krause, K. J.Schafer, and K. C.Kulander, “High-order harmonic generation from atoms and ions in the high intensity regime,” Phys. Rev. Lett., vol. 68, no. 24, pp. 3535–3538, 1992.
[3] T.Popmintchev, M.-C.Chen, P.Arpin, M. M.Murnane, and H. C.Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nat. Photonics, vol. 4, no. 12, pp. 822–832, 2010.
[4] M.Ferray, A.L’Huillier, X. F.Li, L. A.Lompre, G.Mainfray, and C.Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B At. Mol. Opt. Phys., vol. 21, no. 3, pp. L31–L35, 1999.
[5] A.Paul, E. A.Gibson, X.Zhang, A.Lytle, T.Popmintchev, and X.Zhou, “Phase matching techniques for coherent soft x-ray generation,” IEEE J. Quantum Electron., vol. 42, no. 1, pp. 14–26, Jan.2006.
[6] R.W.Boyd, Nonlinear Optics. 2008.
[7] A. D.Shiner, C.Trallero-Herrero, N.Kajumba, H. C.Bandulet, D.Comtois, F.Le´gare´, M.Gigue`re, J. C.Kieffer, P. B.Corkum, and D. M.Villeneuve, “Wavelength scaling of high harmonic generation efficiency,” Phys. Rev. Lett., vol. 103, no. 7, pp. 1–4, 2009.
[8] A.McPherson, G.Gibson, H.Jara, U.Johann, T. S.Luk, I. a.McIntyre, K.Boyer, and C. K.Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B, vol. 4, no. 4, p. 595, 1987.
[9] A.L’Huillier, M.Lewenstein, P.Salières, P.Balcou, M. Y.Ivanov, J.Larsson, and C. G.Wahlström, “High-order Harmonic-generation cutoff,” Phys. Rev. A, vol. 48, no. 5, pp. 69–72, 1993.
[10] M.Lewenstein, P.Balcou, M. Y.Ivanov, A.L’Huillier, and P. B.Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A, vol. 49, no. 3, pp. 2117–2132, 1994.
[11] A.Gold and H. B.Bebb, “Theory of multiphoton ionization,” Phys. Rev. Lett., vol. 14, no. 3, pp. 60–63, 1965.
[12] L.V.Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP, vol. 20, no. 5, pp. 1307–1314, 1965.
[13] S.Augst, D. D.Meyerhofer, D.Strickland, and S. L.Chint, “Laser ionization of noble gases by Coulomb-barrier suppression,” J. Opt. Soc. Am. B, vol. 8, no. 4, p. 858, 1991.
[14] F.Calegari, G.Sansone, and S.Stagira, “Femtosecond x-ray science,” vol. 443.
[15] M.V.Ammosov, N. B.Delone, and V. P.Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP, vol. 64, no. December 1986, pp. 1191–1194, 1986.
[16] A.-T.Le, H.Wei, C.Jin, and C. D.Lin, “Tutorial: Strong-field approximation and its extension for high-order harmonic generation with mid-infrared lasers,” J. Phys. B At. Mol. Opt. Phys., vol. 49, no. 5, p. 53001, 2016.
[17] P.Salieres, “Feynman’s Path-Integral Approach for Intense-Laser-Atom Interactions,” Science (80-. )., vol. 292, no. 5518, pp. 902–905, 2001.
[18] J.Levesque, D.Zeidler, J. P.Marangos, P. B.Corkum, and D. M.Villeneuve, “High harmonic generation and the role of atomic orbital wave functions,” Phys. Rev. Lett., vol. 98, no. 18, pp. 1–4, 2007.
[19] J. P.Farrell, L. S.Spector, B. K.McFarland, P. H.Bucksbaum, M.Gühr, M. B.Gaarde, and K. J.Schafer, “Influence of phase matching on the Cooper minimum in Ar high-order harmonic spectra,” Phys. Rev. A - At. Mol. Opt. Phys., vol. 83, no. 2, p. 23420, 2011.
[20] J.Higuet, H.Ruf, N.Thir´e, R.Cireasa, E.Constant, E.Cormier, D.Descamps, E.M´evel, S.Petit, B.Pons, Y.Mairesse, and B.Fabre, “High-order harmonic spectroscopy of the Cooper minimum in argon: Experimental and theoretical study,” Phys. Rev. A, vol. 83, no. 5, pp. 1–12, 2011.
[21] P.Balcou, P.Salieres, A.L’Huillier, and M.Lewenstein, “Generalized phase-matching conditions for high harmonics: The role of field-gradient forces,” Phys. Rev. A, vol. 55, no. 4, pp. 3204–3210, 1997.
[22] G.Doumy, J.Wheeler, C.Roedig, R.Chirla, P.Agostini, and L. F.Dimauro, “Attosecond synchronization of high-order harmonics from midinfrared drivers,” Phys. Rev. Lett., vol. 102, no. 9, pp. 2–5, 2009.
[23] D. H.Ko, K. T.Kim, and C. H.Nam, “Attosecond-chirp compensation with material dispersion to produce near transform-limited attosecond pulses,” J. Phys. B At. Mol. Opt. Phys., vol. 45, no. 7, p. 74015, 2012.
[24] Y.Mairesse, D.deBohan, L. J.Frasinski, H.Merdji, L. C.Dinu, P.Monchicourt, P.Breger, M.Kovacev, R.Taieb, B.Carre, H. G.Muller, P.Agostini, and P.Salieres, “Attosecond Synchronization of High-Harmonic Soft X-Rays,” Science (80-. )., vol. 302, no. November, pp. 1540–1544, Nov.2003.
[25] S.Feng andH. G.Winful, “Physical origin of the Gouy phase shift.,” Opt. Lett., vol. 26, no. 8, pp. 485–487, 2001.
[26] J.Peatross, M.V.Fedorov, and K. C.Kulander, “Intensity-dependent phase-matching effects in harmonic generation,” J. Opt. Soc. Am. B, vol. 12, no. 5, p. 863, 1995.
[27] P.Balcou, P.Salieres, A.L’Huillier, M.Lewenstein, P.Sali`eres, A.L’Huillier, and M.Lewenstein, “Generalized phase-matching conditions for high harmonics: The role of field-gradient forces,” Phys. Rev. A, vol. 55, no. 4, pp. 3204–3210, 1997.
[28] S.Hädrich, J.Rothhardt, M.Krebs, S.Demmler, A.Klenke, A.Tünnermann, and J.Limpert, “Single-pass high harmonic generation at high repetition rate and photon flux,” J. Phys. B At. Mol. Opt. Phys., vol. 49, no. 17, pp. 1–26, 2016.
[29] T.Popmintchev, M.-C.Chen, A.Bahabad, M.Gerrity, P.Sidorenko, O.Cohen, I. P.Christov, M. M.Murnane, and H. C.Kapteyn, “Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum,” Proc. Natl. Acad. Sci., vol. 106, no. 26, pp. 10516–10521, 2009.
[30] “CXRO.” [Online]. Available: http://www.cxro.lbl.gov/.
[31] E.Constant, D.Garzella, P.Breger, E.Mével, C.Dorrer, C.LeBlanc, F.Salin, and P.Agostini, “Optimizing High Harmonic Generation in Absorbing Gases: Model and Experiment,” Phys. Rev. Lett., vol. 82, no. 8, pp. 1668–1671, 1999.
[32] E. J.Takahashi, P.Lan, O. D.Mücke, Y.Nabekawa, and K.Midorikawa, “Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses.,” Nat. Commun., vol. 4, p. 2691, 2013.
[33] C.Jin, A. T.Le, and C. D.Lin, “Medium propagation effects in high-order harmonic generation of Ar and N2,” Phys. Rev. A - At. Mol. Opt. Phys., vol. 83, no. 2, p. 23411, 2011.
[34] C.Jin, A. T.Le, and C. D.Lin, “Retrieval of target photorecombination cross sections from high-order harmonics generated in a macroscopic medium,” Phys. Rev. A, vol. 79, no. 5, pp. 1–12, 2009.
[35] W. E. and J. S.Eisebitt, S., Lüning, J., W. F. Schlotter,O. Hellwig, “Lensless imaging of magnetic nanostructures by X-ray,” Nature, vol. 432, no. December, pp. 885–888, 2004.
[36] C.La-O-Vorakiat, M.Siemens, M. M.Murnane, H. C.Kapteyn, S.Mathias, M.Aeschlimann, P.Grychtol, R.Adam, C. M.Schneider, J. M.Shaw, H.Nembach, and T. J.Silva, “Ultrafast demagnetization dynamics at the M edges of magnetic elements observed using a tabletop high-harmonic soft X-ray source,” Phys. Rev. Lett., vol. 103, no. 25, pp. 1–4, 2009.
[37] J. A.Sobota, S. L.Yang, A. F.Kemper, J. J.Lee, F. T.Schmitt, W.Li, R. G.Moore, J. G.Analytis, I. R.Fisher, P. S.Kirchmann, T. P.Devereaux, and Z. X.Shen, “Direct optical coupling to an unoccupied Dirac surface state in the topological insulator Bi2Se3,” Phys. Rev. Lett., vol. 111, no. 13, pp. 1–5, 2013.
[38] F.Schmitt, P. S.Kirchmann, U.Bovensiepen, R. G.Moore, L.Rettig, M.Krenz, J.-H.Chu, N.Ru, L.Perfetti, D. H.Lu, M.Wolf, I. R.Fisher, and Z.-X.Shen, “Transient Electronic Structure and Melting of a Charge Density Wave in TbTe3,” Science (80-. )., vol. 321, no. 5896, pp. 1649–1652, 2008.