簡易檢索 / 詳目顯示

研究生: 呂靜美
論文名稱: 核二廠RELAP5-3DK 冷卻水流失事故輸入模式的建立
Development of KUOSHENG Nuclear Power Plant RELAP5-3DK Loss of Coolant Accident Evaluation Model Input Deck
指導教授: 李敏
Lee, Min
口試委員: 李敏
白寶實
梁國興
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 104
中文關鍵詞: 冷卻水流失事故
外文關鍵詞: loca
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    依據美國聯邦法規10CFR50.46(Acceptance Criteria for Emergency Core Cooling System for Light Water Reactors)規定,冷卻水流失事故分析方法分為保守性與真實興兩種模式。本研究論文採用保守型模式,以清華大學熱水流動態模擬實驗室所發展的核二廠RELAP5-3D穩態模式為基礎,使用RELAP5-3DK保守估算程式為計算工具,建立核二廠RELAP5-3DK冷卻水流失事故輸入數據檔,執行冷卻水流失事故分析測試。
    核二廠冷卻水流失事故輸入數據檔之建立程序如下,將核二廠RELAP5-3D穩態模式數據檔進行Appendix K 模式轉換與冷卻水流失事故相關時程設定。為使本模式分析能符合真實情況下電廠各系統的運作,安全系統跳脫邏輯設定參考核二廠提供的最新資料進行設定,而緊急爐心冷卻系統設定、電廠初始狀態,以及冷卻水流失事故分析案例特性如:破口大小、位置等,皆參考廠家報告之設定。
    本分析案例特性為:(1)雙頭斷管大破口位於再循環管路汲水側(2)初始狀態104.2%額定功率、75%額定爐心流量(3)燃料軸向功率分布為Top-peak(4)緊急爐心冷卻系統單一失效(ECCS single failure)為HPCS失效。完成參考輸入數據檔(reference case)建立後,接續進行模式靈敏度分析與電廠狀態靈敏度分析,得到的最保守的燃料棒護套最高溫(Peak Cladding Temperature, PCT)為1844℉,並加入了電廠狀態不準度分析,其組合為反應爐高壓力、低爐心流量、反應爐低水位(L-3)、低飼水溫度。研究結果顯示本模式可提供很大的保守性,因其PCT高於廠家報告之分析,且低於法規限值2200℉,可用於未來核二廠相關安全分析之基礎。


    Abstract
    As specified in the 10 CFR 50.46 of U.S Nuclear Regulatory Commission, lisensing calculations of Loss of Coolant Accident (LOCA) of Light Water Reactor can be performed by the conservative method or the realistic method. In the present study, the conservative method is adopted to analyze the large break LOCA accident of Kuosheng Nuclear Power Plant of Taiwan Power Company. The plant emolys a Boiling Water Reactor (BWR VI) designed by General Electric.. Based on RELAP5-3D input deck of the plant analyzed, a LOCA Evaluation Model input deck for RELAP5-3DK is developed. The results of the analyses are compared with the results of the fuel supplier of the plant.
    The major chracteristics of LOCA alalyses of the present study are:(1) double-ended large break at recirculation suction side, (2) 104.2% rated thermal power & 75% core flow, (3) top-peak axial power distribution, (4) failure of high pressure spray system is chosen as the single failure of emergency core cooling system. Sensitivity study of initial condition is also performed. The combination used in the analysis is high reactor vessel pressure、low reactor vessel water level at L-3、low feedwater temperature. It has been identified the most conservative estimation of the peak cladding temperature (PCT) is 1844 ℉。

    目 錄 摘要......................................................................i Abstract........ ii 致謝辭.................................................................. iii 目錄.....................................................................iv 表目錄................. vi 圖目錄................ vii 第一章 序論 1 1.1 研究動機 1 1.2 研究方法 1 1.3 論文架構 2 第二章 RELAP5程式簡介 3 2.1 RELAP5發展簡介 3 2.2 RELAP5-3D簡介 4 2.3 保守性冷卻水流失事故分析方法簡介 6 2.4 RELAP5-3DK簡介 8 第三章 核二廠系統介紹 18 3.1 核二廠簡介 18 3.2 反應器系統 18 3.2.1 反應器 18 3.2.2 再循環水系統 21 3.3 功率轉換系統 21 3.3.1 主蒸氣系統 21 3.2.2 汽機發電機系統 23 3.3.3 循環水系統 23 3.3.4 飼水及凝結水系統 24 3.4 緊急系統 24 3.4.1 反應爐保護系統(RPS) 24 3.4.2 控制棒驅動系統 25 3.4.3 備用硼液系統 25 3.4.4 爐心隔離冷卻 26 3.4.5 自動洩壓系統 26 3.4.6 緊急爐心冷卻系統 26 3.4.7 餘熱排除(Residual Heat Removal, RHR)系統 28 第四章 核二廠保守性冷卻水事故分析模式建立 35 4.1 研究方法與步驟 35 4.2 核二廠RELAP5-3DK基準輸入數據檔介紹 36 4.2.1 參考輸入數據檔(reference case)熱水流模擬節點分布與說明 37 4.2.2 爐心熱結構 40 4.3 模式相關設定 41 4.3.1 Appendix K計算模式轉換及數據檔設定 41 4.3.2 LOCA相關時程啟動設定 42 4.4 緊急爐心冷卻系統(ECCS)與反應爐安全系統跳脫設定 44 4.4.1 緊急爐心冷卻系統(ECCS)相關設定 44 4.4.2 反應爐安全系統跳脫邏輯設定 46 4.5 廠家報告與limiting case 48 4.5.1 冷卻水流失事故分析個案的選擇 48 4.5.2 Break Spectrum 48 4.5.3 Limiting case 50 第五章 核二廠冷卻水流失事故分析 63 5.1 核二廠冷卻水流失事故參考輸入檔建立與分析 63 5.1.1 系統保守假設設定-事故分析 63 5.1.2系統初始狀態設定 64 5.1.3 爐心狀態設定 64 5.1.4 冷卻水流失事故分析 65 5.2 模式靈敏度分析 68 5.2.1 破口附近節點數 68 5.2.2 爐槽底部(Lower Plenum)節點數 68 5.2.3 燃料2-D再泛水熱傳導 69 5.2.4 破口排放係數(Discharge coefficient) 69 5.2.5 模式靈敏度分析結果 70 5.3 燃料特性設定 71 5.3.2 FROSSTEY-2程式簡介 71 5.3.2 加入燃料性質後遇到之問題 72 5.4 電廠狀態靈敏度分析 73 5.4.4 緊急爐心冷卻系統單一失效 73 5.4.2 爐心流量靈敏度分析 73 5.4.3 電廠狀態不準度分析 75 第六章 結論 101 6.1結果與討論 101 6.2未來工作 103 參考資料... 104

    參考資料
    1. U.S. NRC,"10CFR50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear reactors",1988 &
    10 CFR 50附錄 K中之緊急爐心冷卻系統分析評估模式(ECCS Evaluation Model,EM Model)
    2. [Framatome ANP Richland, Inc.,Kuosheng LOCA Break Spectrum Analysis for ATRIUM™-10 Fuel With the 1997 LOCA Methodology , EMF-2592(P) Revision 0, May2001
    3. 徐郁芬、梁國興、洪煥仁,核一廠RELAP5-3D/K失水事故模式建立,行政院原子能委員會核能研究所,中華民國九十四年六月
    4. RELAP5-3D 使用手冊
    5. Baker, L., Just, L.C., “Studies of Metal Water Reactions at High Temperatures, III. Experimental and Theoretical Studies of the Zirconium-Water Reaction, ”ANL-6548, page 7, May 1962
    6. J.V. Cathcart, et al., “Zirconium Metal-Water Oxidation Kinetics IV. Reaction Rate Studies, ” ORNL/NUREG-17, August 1977.
    7. F.J. Moody, “Maximum Flow Rate of a Single Component, Two-Phase Mixture.”Journal of Heat Transfer, Trans American Society of Mechanical Engineers, 87, No.1, Februrary, 1965
    8. B&W-2. J.S. Gellerstedt, R. A. Lee, W. J. Oberjohn, R. H. Wilson, L. J. Stanek, “Correlation of Critical Heat Flux in a bundle Cooled by Pressurized Water,” Two-Phase Flow and Heat Transfer in Rod Bundles, ASME, New York, 1969
    9. Barnett. P. G. Barnett, “A Correlation of Burnout Data for Uniformly Heated Annuli and Its Uses for Predicting Burnout in Uniformly Heated Rod Bundles,” AEEW-R 463, 1966
    10. Hughes. E. D. Hughes, “A Correlation of Rod Bundle Critical Heat Flux for Water in the Pressure Range 150 to 725 psia,” IN-1412, Idaho Nuclear Corporation, July 1970
    11. Equation 5.7 of D.C. Groeneveld, “An Investigation of Heat Transfer in the Liquid Deficient Regime,” AECL-3281 revised December 1969
    12. J.B. McDonough, W. Milich, E.C. King, “An Experimental Study of Partial Film Boiling Region with Water at Elevated Pressures in a Round Vertical Tube,” Chemical Engineering Progress Symposium Series, Vol. 57, No. 32, pages 187-208, 1961
    13. 核二訓練教材

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE