研究生: |
吳至彧 Wu, Chih-Yu |
---|---|
論文名稱: |
利用化學氣相沉積法合成數層石墨烯以及其透明導電薄膜之研究 The Study of Synthesizing Few Layer Graphene by Thermal-CVD and Graphene Based Transparent Conductive Thin Film |
指導教授: |
柳克強
Leou, Keh-Chyang 蔡春鴻 Tsai, Chuen-Horng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 143 |
中文關鍵詞: | 單層石墨烯 、數層石墨烯 、化學氣相沉積法 、捲繞傳輸 、軟性透明導電薄膜 |
外文關鍵詞: | Single-layer graphene, Few-layer graphene, Chemical vapor deposition, Roll-to-roll, Flexible transparent conductive thin film |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯是由碳原子所組成,僅僅只有單原子層厚度的準二維材料,具有良好的機械強度、化學穩定性以及快速的電子遷移率,因此在軟性透明導電薄膜的應用上受到重視。
雖然單層石墨烯具有快速的電子遷移率,但是受限於自由電子數量的不足,因此無法真正符合透明導電薄膜的應用。透過增加石墨烯的層數以增加自由電子的數量經過計算是可行的。
根據計算結果,10~20層的數層石墨烯是最適合用在透明導電薄膜的範圍。因此本研究利用鎳箔當作催化金屬和支撐基材,透過化學氣相沉積法,成長數層石墨烯。透過改變稀釋氣體流量的控制、通入碳源氣體的時間,在最佳化的參數下,可成長出高覆蓋率以及大面積(公分等級)的FLG,並且控制層數在1~30層內,並且將此最佳製程參數定為實驗室FLG的標準製程。
為了釐清石墨烯在化學氣相沉積製程成長機制的問題,針對相同位置的數層石墨烯/鎳試片,利用不同的分析儀器,包括拉曼光譜儀的一維以及二維掃描分析、掃描式電子顯微鏡、原子力顯微鏡、能量散佈光譜儀、背向電子散射繞射光譜儀的二維掃描分析,進行最直接的量測與分析,提供石墨烯在成長機制中,最有力的實驗分析結果。此外,針對析出成長機制進行驗證的實驗。根據我們的實驗以及分析結果,析出機制並無法完全解釋實驗結果,沉積機制可能是比較適合的成長機制。
在轉移部份,透過稀鹽酸水溶液的蝕刻將數層石墨烯從鎳箔轉移至二氧化矽/矽試片上,並且針對相同的位置進行包括拉曼光譜儀、掃描式電子顯微鏡、原子力顯微鏡、能量散佈光譜儀、。從原子力顯微鏡分析結果,標準製程下製備的數層石墨烯厚度約數奈米。
在製備石墨烯軟性透明導電薄膜部份,利用鎳箔軟而薄的特性,透過符合工業應用的捲繞傳輸轉移製程,將標準製程的數層石墨烯轉移至乙烯-醋酸乙烯共聚物/ (聚對苯二甲二乙酯上,完成軟性透明導電薄膜,在最佳的製程條件下,可得到在波長550 nm穿透率50~55 %,片電阻約數千Ω/□的軟性透明導電薄膜。
Graphene, a 2D-planner material which is composed of carbons with only one-atom-thick has a stable chemical stability, excellent electron mobility, and high mechanical strength. Therefore, graphene has paid more and more attention for the application on flexible transparent conductive thin film.
However, due to the lower free electron concentration (or free electron quantity) of Single-layer graphene, it’s difficult to apply on the flexible transparent conductive thin film. According to our calculation, the free electron quantity can be enhanced by adding the layers of graphene.
The optimum layers of graphene for transparent conductive thin film is about 10~20 layers by our calcutation. Therefore, we have synthesized few-layer graphene (FLG) on nickel foil by chemical vapor deposition method. By changing the amounts of diluation gases and the times of carbon sources, we can synthesize large area (centimeter scale) FLG with high coverage on nickel foil under optimum condition. The numbers of layers is controlled for 1~30 layers.
To further investigate the growth mechanism of graphene in chemical vapor deposition method, we analyze the FLG/Ni with Raman mapping, SEM, AFM, EDX, and the EBSD on the same location. Therefore, we can provide the direct experimental analysis results. The preliminary experimental results can’t be explained by segregation growth mechanism and deposition growth mechanism would be an appropriate for our cases.
In transfer sections, FLG can be transferred by etching nickel foil with dilute HCl solution to SiO2/Si. FLG/SiO2/Si sample is also analyzed with Raman spectra, SEM, AFM, and EDX on the same location. The thickness of our FLG is about several nm by AFM analysis results.
To synthesize FLG flexible transparent conductive thin film, FLG is transferred by roll-to-roll (R2R) process after CVD process. The transmittance and sheet resistance for our best FLG flexible transparent conductive thin films are 50~55 % and several thounds Ω/□.
[1] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat Mater, vol. 6, pp. 183-191, 2007.
[2] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, "Intrinsic and extrinsic performance limits of graphene devices on SiO2," Nat Nano, vol. 3, pp. 206-209, 2008.
[3] T. Durkop, S. A. Getty, E. Cobas, and M. S. Fuhrer, "Extraordinary Mobility in Semiconducting Carbon Nanotubes," Nano Letters, vol. 4, pp. 35-39, 2004.
[4] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science, vol. 321, pp. 385-388, July 18, 2008.
[5] I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen, "Mechanical properties of suspended graphene sheets," 2007, pp. 2558-2561.
[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, pp. 666-669, October 22 2004.
[7] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, "Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties," Nano Letters, vol. 0, 2009.
[8] X. Wu, Y. Pei, and X. C. Zeng, "B2C Graphene, Nanotubes, and Nanoribbons," Nano Letters, vol. 9, pp. 1577-1582, 2009.
[9] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, vol. 457, pp. 706-710, 2009.
[10] X. Wang, L. Zhi, and K. Mullen, "Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells," Nano Lett., vol. 8, pp. 323-327, 2008.
[11] T. O. Wehling, K. S. Novoselov, S. V. Morozov, E. E. Vdovin, M. I. Katsnelson, A. K. Geim, and A. I. Lichtenstein, "Molecular Doping of Graphene," Nano Lett., vol. 8, pp. 173-177, 2008.
[12] Y. Zhang, J. P. Small, W. V. Pontius, and P. Kim, "Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices," Applied Physics Letters, vol. 86, pp. 073104-3, 2005.
[13] W. A. de Heer, C. Berger, X. Wu, P. N. First, E. H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. L. Sadowski, M. Potemski, and G. Martinez, "Epitaxial graphene," Solid State Communications, vol. 143, pp. 92-100, 2007.
[14] G. Eda, G. Fanchini, and M. Chhowalla, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material," Nat Nano, vol. 3, pp. 270-274, 2008.
[15] S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes," Nat Nano, vol. 4, pp. 217-224, 2009.
[16] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils," Science, p. 1171245, May 7, 2009.
[17] C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, "Electronic Confinement and Coherence in Patterned Epitaxial Graphene," Science, vol. 312, pp. 1191-1196, May 26 2006.
[18] D. S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, and J. H. Smet, "Raman Spectra of Epitaxial Graphene on SiC and of Epitaxial Graphene Transferred to SiO2," Nano Lett., 2008.
[19] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, "Transparent, Conductive Carbon Nanotube Films," Science, vol. 305, pp. 1273-1276, August 27, 2004 2004.
[20] P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, "Graphene-Based Liquid Crystal Device," Nano Lett., vol. 8, pp. 1704-1708, 2008.
[21] C. Xu, X. Wu, J. Zhu, and X. Wang, "Synthesis of amphiphilic graphite oxide," Carbon, vol. 46, pp. 386-389, 2008.
[22] Y. Si and E. T. Samulski, "Synthesis of Water Soluble Graphene," Nano Lett., vol. 8, pp. 1679-1682, 2008.
[23] V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, "High-throughput solution processing of large-scale graphene," Nat Nano, vol. 4, pp. 25-29, 2009.
[24] J. T. Grant and T. W. Haas, "A study of Ru(0001) and Rh(111) surfaces using LEED and Auger electron spectroscopy," Surface Science, vol. 21, pp. 76-85, 1970.
[25] P. Yi, S. Dong-Xia, and G. Hong-Jun, "Formation of graphene on Ru(0001) surface," Chinese Physics, vol. 16, pp. 3151-3153, 2007.
[26] H. Z. Yi Pan, Dongxia Shi, Jiatao Sun, Shixuan Du, Feng Liu, Hong-jun Gao,, "Highly Ordered, Millimeter-Scale, Continuous, Single-Crystalline Graphene Monolayer Formed on Ru (0001)," Advanced Materials, vol. 9999, p. NA, 2008.
[27] S. Marchini, S. Gunther, and J. Wintterlin, "Scanning tunneling microscopy of graphene on Ru(0001)," Physical Review B (Condensed Matter and Materials Physics), vol. 76, pp. 075429-9, 2007.
[28] T. H. D. Fujita, "Surface precipitation of graphite layers on carbon-doped nickel and their stabilization effect against chemisorption and initial oxidation," Surface and Interface Analysis, vol. 19, pp. 430-434, 1992.
[29] D. Fujita and K. Yoshihara, "Surface precipitation process of epitaxially grown graphite (0001) layers on carbon-doped nickel(111) surface," in The 40th National Symposium of the American Vacuum Society, Orlando, Florida (USA), 1994, pp. 2134-2139.
[30] J. C. Shelton, H. R. Patil, and J. M. Blakely, "Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition," Surface Science, vol. 43, pp. 493-520, 1974.
[31] a. L. L. B. W. M. Hess, Proc. 6th Int. Congr. on Electron Microscopy (Kyoto), vol. 1, p. 569, 1966.
[32] A. E. Karu and M. Beer, "Pyrolytic Formation of Highly Crystalline Graphite Films," Journal of Applied Physics, vol. 37, pp. 2179-2181, 1966.
[33] J. Vaari, J. Lahtinen, and P. Hautoj□rvi, "The adsorption and decomposition of acetylene on clean and K-covered Co(0001)," Catalysis Letters, vol. 44, pp. 43-49, 1997.
[34] K. Yamamoto, M. Fukushima, T. Osaka, and C. Oshima, "Charge-transfer mechanism for the (monolayer graphite) /Ni(111) system," Physical Review B, vol. 45, p. 11358, 1992.
[35] Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, and C. Oshima, "Atomic structure of monolayer graphite formed on Ni(111)," Surface Science, vol. 374, pp. 61-64, 1997.
[36] C. Oshima and A. Nagashima, "Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces," Journal of Physics: Condensed Matter, vol. 9, pp. 1-20, 1997.
[37] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, "STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition," Surface Science, vol. 264, pp. 261-270, 1992.
[38] H. Ueta, M. Saida, C. Nakai, Y. Yamada, M. Sasaki, and S. Yamamoto, "Highly oriented monolayer graphite formation on Pt(111) by a supersonic methane beam," Surface Science, vol. 560, pp. 183-190, 2004.
[39] D. E. Starr, E. M. Pazhetnov, A. I. Stadnichenko, A. I. Boronin, and S. K. Shaikhutdinov, "Carbon films grown on Pt(111) as supports for model gold catalysts," Surface Science, vol. 600, pp. 2688-2695, 2006.
[40] A. T. N'Diaye, S. Bleikamp, P. J. Feibelman, and T. Michely, "Two-Dimensional Ir Cluster Lattice on a Graphene Moir[e-acute] on Ir(111)," Physical Review Letters, vol. 97, pp. 215501-4, 2006.
[41] J. Coraux, A. T. N`Diaye, C. Busse, and T. Michely, "Structural Coherency of Graphene on Ir(111)," Nano Letters, vol. 8, pp. 565-570, 2008.
[42] S. Helveg, C. Lopez-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, and J. K. Norskov, "Atomic-scale imaging of carbon nanofibre growth," Nature, vol. 427, pp. 426-429, 2004.
[43] P. R. Somani, S. P. Somani, and M. Umeno, "Planer nano-graphenes from camphor by CVD," Chemical Physics Letters, vol. 430, pp. 56-59, 2006.
[44] S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, "Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol," Chemical Physics Letters, vol. 360, pp. 229-234, 2002.
[45] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, "Chemical vapor deposition of thin graphite films of nanometer thickness," Carbon, vol. 45, pp. 2017-2021, 2007.
[46] A. N. Obraztsov, A. V. Tyurnina, E. A. Obraztsova, A. A. Zolotukhin, B. Liu, K.-C. Chin, and A. T. S. Wee, "Raman scattering characterization of CVD graphite films," Carbon, vol. 46, pp. 963-968, 2008.
[47] Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, and S.-S. Pei, "Graphene segregated on Ni surfaces and transferred to insulators," Applied Physics Letters, vol. 93, pp. 113103-3, 2008.
[48] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and J. Kong, "Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition," Nano Letters, vol. 9 (1), pp. 30-35, 2009.
[49] F. G. Seung Jin Chae, scedil, and K. K. K. , Eun Sung Kim, Gang Hee Han, Soo Min Kim, Hyeon-Jin Shin, Seon-Mi Yoon, Jae-Young Choi, Min Ho Park, Cheol Woong Yang, Didier Pribat, Young Hee Lee,, "Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation," Advanced Materials, vol. 9999, p. NA, 2009.
[50] A. Malesevic, R. Vitchev, K. Schouteden, A. Volodin, L. Zhang, G. V. Tendeloo, A. Vanhulsel, and C. V. Haesendonck, "Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition," Nanotechnology, vol. 19, p. 305604, 2008.
[51] J. J. Lander, H. E. Kern, and A. L. Beach, "Solubility and Diffusion Coefficient of Carbon in Nickel: Reaction Rates of Nickel-Carbon Alloys with Barium Oxide," Journal of Applied Physics, vol. 23, pp. 1305-1309, 1952.
[52] Y.-A. Mo, "The effect of catalysts (iron, cobalt, and nickel) on the mechanism and kinetics of carbon nanotube growth by thermal CVD method," MS thesis, National Tsing Hua University, 2005.
[53] J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, "Organic solar cells with solution-processed graphene transparent electrodes," Applied Physics Letters, vol. 92, pp. 263302-3, 2008.
[54] G. George, H. Lingbing, and H. David, "GRAPHENE FILM AS TRANSPARENT AND ELECTRICALLY CONDUCTING MATERIAL," US patent 20070284557, 2007.
[55] V. C. Tung, L.-M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, "Low-Temperature Solution Processing of Graphene−Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors," Nano Letters, vol. 9, pp. 1949-1955, 2009.
[56] A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. Liu, and J. Kong, "Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates," The Journal of Physical Chemistry C, vol. 112, pp. 17741-17744, 2008.
[57] V. Huc, N. Bendiab, N. Rosman, T. Ebbesen, C. Delacour, cile, and V. Bouchiat, "Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite," Nanotechnology, vol. 19, p. 455601, 2008.
[58] Z.-Y. Juang, C.-Y. Wu, C.-W. Lo, W.-Y. Chen, C.-F. Huang, J.-C. Hwang, F.-R. Chen, K.-C. Leou, and C.-H. Tsai, "Synthesis of graphene on silicon carbide substrates at low temperature," Carbon, vol. 47, pp. 2026-2031, 2009.
[59] W.-Y. Li, "Chemical Vapor Deposition Growth of Single-Walled Carbon Nanotubes for Electronic Applications " PhD thesis, National Tsing Hua University, 2007.
[60] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, "Making graphene visible," Applied Physics Letters, vol. 91, p. 063124, 2007.
[61] C.-F. Hu, "Control of the diameter distribution of CVD grown single-walled carbon nanotubes by optimizing the Mo/Fe/Al/SiO2 catalytic system " MS thesis, National Tsing Hua University, 2006.
[62] K.-Y. Shin, "Study of preferred diameter single-walled carbon nanotube growth," PhD thesis, National Tsing Hua University, 2007.
[63] C.-H. Weng, "The growth and in- situ post-treatment of carbon nanotubes in ICP-CVD system and the Raman analysis," MS thesis, National Tsing Hua University, 2004.
[64] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, "Raman Spectrum of Graphene and Graphene Layers," Physical Review Letters, vol. 97, pp. 187401-4, 2006.
[65] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, 2007.
[66] Y. y. Wang, Z. h. Ni, T. Yu, Z. X. Shen, H. m. Wang, Y. h. Wu, W. Chen, and A. T. Shen Wee, "Raman Studies of Monolayer Graphene: The Substrate Effect," The Journal of Physical Chemistry C, vol. 112, pp. 10637-10640, 2008.
[67] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, and L. Wirtz, "Raman imaging of graphene," Solid State Communications, vol. 143, pp. 44-46, 2007.
[68] P. Poncharal, A. Ayari, T. Michel, and J. L. Sauvajol, "Raman spectra of misoriented bilayer graphene," Physical Review B (Condensed Matter and Materials Physics), vol. 78, pp. 113407-4, 2008.
[69] 黃宏勝 and 林麗娟, "FE-SEM/CL/EBSD分析技術簡介," 工業材料雜誌, vol. 201, pp. 99-108, 2003.
[70] M. Yudasaka, R. Kikuchi, Y. Ohki, and S. Yoshimura, "Graphite growth influenced by crystallographic faces of Ni films," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 16, pp. 2463-2465, 1998.
[71] L. G. De Arco, Z. Yi, A. Kumar, and Z. Chongwu, "Synthesis, Transfer, and Devices of Single- and Few-Layer Graphene by Chemical Vapor Deposition," Nanotechnology, IEEE Transactions on, vol. 8, pp. 135-138, 2009.
[72] C. Faugeras, A. Nerriere, M. Potemski, A. Mahmood, E. Dujardin, C. Berger, and W. A. de Heer, "Few-layer graphene on SiC, pyrolitic graphite, and graphene: A Raman scattering study," Applied Physics Letters, vol. 92, pp. 011914-3, 2008.
[73] K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, "Mobility variations in mono- and multi-layer graphene films," 2008.
[74] F. Hsieh, "Vertically-Aligned Carbon Nanofibers Coated with a Boron Nitride Nanofilm by PECVD and Field Emission Characteristics" MS thesis, National Tsing Hua University, 2007.