簡易檢索 / 詳目顯示

研究生: 黃詠舜
Huang, Yong-Shun.
論文名稱: 室內網格網路中傳播環境對於定位效能影響研究
A Study of the Impact of Propagation Environments on Positioning Performance for Indoor Grid Networks
指導教授: 蔡育仁
Tsai, Yuh-Ren
口試委員: 梁耀仁
Liang, Yao-Jen
黃政吉
Huang, Jeng-Ji
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 56
中文關鍵詞: 低功耗藍芽室內定位網格網路
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於無線通訊技術的進步及物聯網的發展,不同的室內定位技術也開始被研究,例如:Wi-Fi室內定位技術、低功耗藍芽室內定位技術、ZigBee室內定位技術…等。其中,低功耗藍芽室內定位技術會利用接收訊號強度指示來進行距離的評估,但接收訊號強度容易受到室內傳播環境的影響而有所偏差。因此會出現一個問題:相同的演算法在不同的室內傳播環境下定位出來的效能也會也所不同。本論文將討論定位環境高度所造影響,再使用MATLAB來模擬。我們會模擬低功耗藍芽模組在不同的室內傳播環境下收到的接收訊號強度,而這些低功耗藍芽模組是以網格的方式擺放。為了降低高度差異造成的定位誤差,我們會提出一個演算法。該演算法透過平均區域內的藍芽模組的接收訊號強度來降低誤差。我們會討論該算法的最佳化效能並給予藍芽模組放置密度的建議。最後,我們會拿此演算法跟其他兩種常見的室內定位演算法的模擬結果做比較。


    Due to the progress of wireless communication technology and the development of Internet of Things (IoT), different kinds of indoor positioning technologies have been researched. For example, Wi-Fi indoor positioning technology, Bluetooth Low Energy (BLE) indoor positioning technology, ZigBee indoor positioning technology, etc. BLE indoor positioning technology uses the Received Signal Strength (RSS) to evaluate the distance, but the RSS value is easy to have a deviation be-cause of the impact of indoor propagation environment. Therefore, one problem has been raised: “The same algorithm in different indoor propagation environments will get different positioning performances.” In this thesis, we will discuss the impact of the height of positioning environment, and use MATLAB to do simulation. We will simulate the Received Signal Strength (RSS) of BLE modules whose placement is in grid network in different indoor propagation environments. In order to reduce the error caused by the difference of height, we will propose an algorithm. This algorithm takes advantage of the local average of the RSS of BLE modules to reduce the error. We will dis-cuss the optimized performance of this algorithm, and give the suggestion of the density of BLE modules. Finally, we will compare the simulations results of this algorithm with the simulations re-sults of other two common indoor positioning algorithms.

    中文摘要 ABSTRACT 致謝 CONTENTS LIST OF FIGURES LIST OF TABLES Chapter 1 Introduction-------------------------------------------1 1.1 Motivation---------------------------------------------------1 1.2 Related Works------------------------------------------------2 Chapter 2 Background Knowledge-----------------------------------4 2.1 Bluetooth Low Energy (BLE)-----------------------------------4 2.1.1 BLE Core System Architecture-------------------------------4 2.1.2 Advertising and Scanning-----------------------------------7 2.1.3 Beacons----------------------------------------------------8 2.2 System Model------------------------------------------------10 2.2.1 RSS Model-------------------------------------------------10 2.2.2 Positioning Model-----------------------------------------12 2.3 Indoor Positioning Algorithms-------------------------------15 2.3.1 Trilateration---------------------------------------------16 2.3.2 Weighted Centroid Localization (WCL)----------------------18 Chapter 3 Problem Analysis and Proposed Method------------------20 3.1 Evaluation of the Error Caused by Height Changing-----------20 3.1.1 Evaluation the RSS of One Receiver in Different Height----20 3.1.2 Error of Two Common Indoor Positioning Algorithms in Different Heights-----------------------------------------------25 3.2 Analysis the Fluctuation of RSS-----------------------------27 3.2.1 Real Measurement of the Antenna Gain Pattern of BLE Dongle ----------------------------------------------------------------28 3.2.2 Simulation the Channel Fading of BLE Advertising Channels-30 3.3 Local Average of RSS in Grid Environment (LARGE) Algorithm--33 3.3.1 Process of LARGE Algorithm--------------------------------34 3.3.2 Find the Most Efficient D_dongle for LARGE Algorithm------37 3.3.3 Select the Most Appropriate Number of Eyes----------------41 3.4 Find the Optimal Weighting Coefficient Used in LARGE--------46 Chapter 4 Simulation Results------------------------------------48 4.1 Simulation Results of Positioning Scale Changing------------48 4.2 Simulation Results of Changing the Density of Sensors-------49 4.3 Simulation Results of Changing the γ------------------------50 4.4 Simulation Results of Changing the σ------------------------52 Chapter 5 Conclusions-------------------------------------------54 References------------------------------------------------------55

    [1] S. Sadowski and P. Spachos, ‘‘Comparison of rssi-based indoor localization for smart buildings with Internet of Things,’’ in Proc. IEEE 9th Annu. Inf. Technol., Electron. Mobile Commun. Conf. (IEMCON), Nov. 2018, pp. 24–29.
    [2] Y. Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert, ‘‘Bluetooth positioning using RSSI and triangulation methods,’’ in Proc. IEEE Consum. Commun. Netw. Conf. (CCNC), Jan. 2013, pp. 837–842.
    [3] M. Z. Marjan, S, Aftanasar Md, and A. A. Ishak, “Trilateration target estimation im-provement using new Error Correction Algorithm,” in Porc. ICEE 2010, May 11-13, 2010, Isfahan, Iran, pp.489-494.
    [4] M. E. Rida, F. Liu, Y. Jadi, A. A. A. Algawhari, and A. Askourih, ‘‘Indoor location posi-tion based on Bluetooth signal strength,’’ in Proc. 2nd Int. Conf. Inf. Sci. Control Eng. (ICISCE), Apr. 2015, pp. 769–773.
    [5] F. Reichenbach and D. Timmermann, “Indoor localization with low complexity in wireless sensor networks,” in Proc. IEEE Int. Conf. Ind. Informat., Aug. 2006, pp. 1018–1023.
    [6] H. Fan, G. He, S. Tao, and H. Xu, “Weighted Centroid Localization Algorithm based on Improved RSSI Ranging,” in Int. Conf. Mechatronic Sciences, Electric Engineering and Computer (MEC), Proceedings of, 2013, pp. 544–547.
    [7] Z.-M. Wang and Y. Zheng, “The study of the weighted centroid localization algorithm based on RSSI,” in Proc. IEEE Int. Conf. Wireless Communication Sensor Netw., Dec. 2014, pp. 276–279.
    [8] J. Blumenthal, R. Grossmann, F. Golatowski, and D. Timmermann, “Weighted centroid localization in Zigbee-based sensor networks,” in Proc. IEEE Int. Symp. WISP, Oct. 2007, pp. 1–6.
    [9] Q. Dong and X. Xu, ‘‘A novel weighted centroid localization algorithm based on RSSI for an outdoor environment,’’ J. Commun., vol. 9, pp. 279–285, Mar. 2014.
    [10] N. Kosović and T. Jagušt, “Enhanced Weighted Centroid Localization Algorithm for In-door Environments”, Int’l. J. Computer, Control, Quantum and Info. Engineering, vol. 8, no. 7, 2014.
    [11] T. Van Haute et al., “Performance analysis of multiple indoor positioning systems in a healthcare environment,” Int. J. Health Geograph., vol. 15, no. 7, pp. 1–15, 2016.
    [12] H. Torii, S. Ibi and S. Sampei, “Indoor Positioning and Tracking by Multi-Point Observa-tions of BLE Beacon Signal,” in Proc. 15th Workshop Positioning, Navigat. Commun. (WPNC), Oct. 2018, pp. 1–5.
    [13] H. Y Shi, "A new weighted centroid localization algorithm based on RSSI," in Proc. Int. Conf. Information and Automation, 2012, pp. 137-141.
    [14] M. Ji, J. Kim, J. Jeon, and Y. Cho, “Analysis of positioning accuracy corresponding to the number of BLE beacons in indoor positioning system,” in Proc. 17th Int. Conf. Adv. Commun. Technol. (ICACT), Seoul, South Korea, 2015, pp. 92–95.
    [15] A. Satan and Z. Toth, “Development of bluetooth based indoor positioning application,” in IEEE Int. Conf. Future IoT Technologies (Future IoT), Jan 2018, pp. 1–6.
    [16] Bluetooth SIG, “CS – Core Specification 4”. [Online]. Available: https://www.bluetooth.com/specifications/archived-specifications/
    [17] A. Nikoukar, M. Abboud, B. Samadi, M. Güneş, and B. Dezfouli, ‘‘Empirical analysis and modeling of Bluetooth low-energy (BLE) advertisement channels,’’ in Proc. 17th Annu. Medit. Ad Hoc Netw. Workshop (Med-Hoc-Net), Jun. 2018, pp. 1–6.
    [18] J. Powar, C. Gao, and R. Harle, ‘‘Assessing the impact of multi-channel BLE beacons on fingerprint-based positioning,’’ in Proc. IEEE IPIN, Sapporo, Japan, Sep. 2017, pp. 1–8.
    [19] F. Russo, “Technique for image denoising based on adaptive piecewise linear filters and automatic parameter tuning,” IEEE Trans. Instrum. Meas., vol. 55, no. 4, pp. 1362–1367, Aug. 2006.

    QR CODE