研究生: |
賴惟揚 Wei-Yang Lai |
---|---|
論文名稱: |
摩擦對金屬直接奈米壓印之影響 Friction Effect on Metallic Pattern Formation by Using Direct Nanoimprint |
指導教授: |
宋震國
Cheng-Kuo Sung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 奈米壓印 、摩擦 、成型 |
外文關鍵詞: | nanoimprint, friction, formation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用金屬直接奈米壓印製程,製作奈米等級鋁金屬結構,並且藉由分子動力學模擬,討論在各種幾何與製程參數 下,模具之受力狀況;參數包含模具線寬節距比與薄膜厚度以及不同下壓速度,並且假定模具與薄膜間剪應力為摩擦力之作用,因此在分子動力學模擬中,觀察模具兩側表面原子之受力,來說明奈米壓印製程中摩擦對模具之影響,另外上述提及幾何因子與製程參數不僅摩擦力受到影響同時對於成型品質也隨之改變。
為了確認分子動力學模擬的結果,實驗上則是採用電子束製作奈米結構的矽模具,並使用金屬直接奈米壓印在不同薄膜厚度之鋁薄膜,得到奈米級微結構,壓印完成後利用原子力顯微鏡以及電子顯微鏡觀察所得到金屬幾何結構,並使用奈米壓痕機量測所需薄膜性質及壓印環境,藉由不同幾何結構之模具與不同厚度之薄膜,在成型結果與模擬結果上,其定性分析成一致現象;因此在未來也許能提供奈米壓印製程調校與壓印機台設計時之參考。
This thesis presents a study on the forces generated between the mold and thin film and their impacts on the formation of nano-scale structures on aluminum thin film by using direct nanoimprint. Molecular dynamics (MD) simulation is first employed to investigate how the forces acting on the mold in different geometrical and fabricating conditions. The former includes the thin-film thickness and the ratio of line width and pitch of the patterns, while the latter is the imprinting speed. Since we assume that the shear force between two contacting surfaces only causes the friction force, we select two layers of atoms above the bottom two layers from the side of the mold to calculate the friction force in order to differentiate from the plowing force. In addition, the aforementioned geometrical and fabricating factors that influence the friction force, which, in turn, affects the quality of formation are studied systematically.
For the verification of MD simulation results, we conduct the nanoindentation and nanoimprint experiments correspondingly. The mold and aluminum thin film are first fabricated. Then, we characterize the material properties of the thin film by using nanoindentation and measure the geometrical profiles of both mold and thin film by using SEM and AFM. We then perform nanoindentation and nanoimprint experiments on the thin films with various thicknesses by different molds. Then, observe the patterns being imprinted on the thin film. Consequently, the results of MD simulation and experiment correspond well, that may provide valuable guidelines for the design of direct nanoimprint.
參考文獻
[1] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom,” Nanoimprint lithography”, J. Vac. Sci. Technol. B 14(6), pp. 4129–4133, 1996
[2] Douglas P. Hansen, Orem, Utaj; John Gunther, Torrance, Galif,” Polarizer Appratus for Producing a Generally Polarized Beam of Light”, United States Patent, 2000
[3] 許時嘉,”設計與製作高效率平面型偏極光分光器以應用於整合型導光板之偏光轉換器”,國立交通大學 碩士論文, p.73–78,2003
[4] Jian JimWang, Jiandong Deng, Xuegong Deng, Feng Liu, Paul Sciortino, Lei Chen, Anguel Nikolov, and Alan Graham”, Innovative High-Performance Nanowire-Grid Polarizers and Integrated Isolators”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 1, pp. 241-253, 2005
[5] 謝志瑋,” 奈米金屬壓印應用於偏光板研究報告”,清華大學精密傳動實驗室奈米小組研討內容, 2005
[6] J. Yang, K. Komvopoulos,” A Molecular Dynamics Analysis of Surface Interference and Tip Shape and Size Effects on Atomic-Scale Friction”, Journal of Tribology Vol. 127, pp. 513-520, 2005
[7] Y.-R. Jeng, P.-C. Tsai and T.-H. Fang,” Molecular dynamics studies of atomic-scale tribological characteristics for different sliding systems”, Tribology Letters, Vol. 18, No. 3, p. 315-329, 2004
[8] Y.-R. H. Zhang, K. Ono,” Molecular dynamics study of dynamic contact and separation between tip and disk surface”, Tribology International Vol. 36, pp. 361-365, 2003
[9] Eui-Sung Yoon, Seung Ho Yang, Hung-Gu Han, Hosung Kong,” An experimental study on the adhesion at a nano-contact”, Wear Vol. 254, pp. 974-980, 2003
[10] Ji-Hoon Kang, Kwang-Seop Kim and Kyung-Woong Kim,” Effects of adhesion and friction on the pattern transfer in nanoimprint lithography : A molecular dynamics simulation”, Proceedings of WTC2005 World Tribology Congress III, September 12-16, 2005
[11] Y. Tian, P. Zhang, G. Liu, X. Tian,” The lifetime comparison of Ni and Ni-PTFE moulding inserts with high aspect-ratio structure”, Microsystem Technologies Vol. 11, pp. 261-264, 2005
[12] Namseok Lee, Young-Kyu Kim and Shinill Kang,” Temperature dependence of anti-adhesion between a stamper with sub-micron patterns and the polymer in nano-moulding processes” , Journal of Physics D: Applied Physics Vol. 37, pp. 1624–1629, 2004
[13] Sunggook Park, Helmut Schift, Celestino Padeste, Bernhard Schnyder Rudiger Kotz, Jens Gobrecht,” Anti-adhesive layers on nickel stamps for nanoimprint lithography” , S. Park et al. / Microelectronic Engineering , pp. 196–201, 2004
[14] Yanping Li, D.Y. Li,” Electron work function, adhesion, and friction between 3d transition metals under light loads“ , Wear 259, pp. 1432–1436, 2005
[15] A.R. Miedema, Surface energies of solid metals, Z. Metallkd 69, pp. 287–292, 1978
[16] O. Tomagnini, F. Ercolessi, and E.Tosatti,” Microscopic interaction between a gold tip and a Pb( 110) surface” , Surface Science 287/288, pp. 1041-1045, 1993
[17] H. Rafii-Tabar, T. Rawazoe,” Dynamics of Atomically Thin Layer-Surface Interactions in Tip-Substrate Geometry”, Jpn. J. Appl. Phy. Vol. 32 Pt.1, 3B, p. 1394–1400, 1993
[18] K. L. Johnson and J. A. Greenwood,” An Adhesion Map for the Contact of Elastic Spheres” , Journal of Colloid and Interface Science 192, p. 326–333, 1997
[18] Lior Kogut and Izhak Etsion,” Adhesion in elastic–plastic spherical microcontact” , Journal of Colloid and Interface Science 261 (2003) 372–378
[19] G. V. Dedkov,” Experimental and Theoretical Aspects of the Modern Nanotribology” , phys. Stat. Sol. (a) 179, 3, pp. 5–75, 2000
[20] 蕭志仲,” 溫度對奈米尺度下接觸物體間黏滯現象之影響:分子動力學模擬及原子力顯微鏡實驗”,國立清華大學 碩士論文, 2004
[21] D.s.Rimai, L.P. DeMejo and K.L. Mittal,”fundamentals of adhesion and interfaces” , Utrecht, the Netherlands, p. 96–107, 1995
[22] D. S. Rimai,a) L. P. DeMejo, and W. B. Vreeland,” Effects of thin, semi-rigid coatings on the adhesion-induced deformations between rigid particles and soft substrates” , J. Appl. Phys. 73 (2), 15 January, p. 668–672, 1993
[23] I. Visser,” The Concept of Negative Hamaker Coefficients. 1. History and Present Status” , Advances in Cotloid Interface Science, 15, p. 157-169, 1981
[24] D. Maugis and H. M. Pollockt,” Surface Forces, Defornation and Adherence at Metal Microcontacts” , Acra metal Vol. 32, NC. 9. pp.1323-1334, 1984
[25] 陳星佑, “溫度效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米 壓印實驗, “國立清華大學碩士論文, 2005.
[26] Girifalco, L. A. and Weizer, V.G., “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev. Vol. 114, No. 3, pp.687-690, 1959.
[27] J. M. Haile, “Molecular Dynamics Simulation,” John Wiley & Sons, New York, 1997.
[28] Igor Stankovic, Siegfried Hess,” Microscopic structure, dynamics, and wear at metal-metal interfaces in sliding contact”, The American Physical Society 066139, pp. 1-13, 2004
[29] C. F. McFadden, A. J. Gellman,“Metallic friction: the influence of atomic adsorbates at submonolayer coverages” , Surface Science 391, pp. 287–299, 1997
[30] M. Debski, M.E.R. Shanahan, J. Schultz,” Mechanisms of contaminant elimination by off-accommodating adhesives Part 1: Displacement and absorption” , INT. J. Adhesion and Adhesives July Vol.6 No.3, pp. 145–149, 1986
[32] B. Bhushan, “Handbook of Micro/Nano Tribology,” 2nd Ed., CRC Press, Boca Raton, pp. 261–270, 1995
[33] Nikhil S Tambe and Bharat Bhushan, “Friction model for the velocity dependence of nanoscale friction,” Nanotechnology 16, pp. 2309–2324, 2005
[34] Mykhaylo Evstigneev and Peter Reimann, “Rate description of the stick-slip motion in friction force microscopy experiments,” Physical Review E Vol. 71, 056119, pp.1-7, 2005
[35] M. Mata, J. Alcal, “The role of friction on sharp indentation,” Journal of the Mechanics and Physics of Solids 52, pp.145-165, 2004
[36] S. Berg and D. Johannsmann, “High Speed Microtribology with Quartz Crystal Resonators,” Physical Review Letters Vol. 91, Number 14, 145505, pp.1-3, 2003
[37] Keiji Hayashi , Noriyuki Sakudo , Toshio Kawai, “A new measure of local temperature distribution in non-equilibrium molecular dynamics simulation of friction,” Surface and Coatings Technology 83, pp. 313-316, 1996
[38] B. Li, P.C. Clapp, J.A. Rifkin, X.M. Zhang, “Molecular dynamics calculation of heat dissipation during sliding friction,” International Journal of Heat and Mass Transfer Vol. 46, pp. 37–43, 2003
[39] B. Taljat, G.M. Pharr, “Development of pile-up during spherical indentation of elastic–plastic solids,” International Journal of Solids and Structures Vol. 41, pp. 3891–3904, 2004
[40] Gabriella Bolzon, Giulio Maier, Michele Panico, “Material model calibration by indentation, imprint mapping and inverse analysis,” International Journal of Solids and Structures Vol. 41, pp. 2957–2975, 2004
[41] 謝雲亮, “尺寸效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗, “國立清華大學碩士論文, 2005.
[42] 張瑞中, “模具線寬與薄膜厚度對於金屬微壓印成形特性之實驗與數值研究 , “國立中正大學碩士論文, 2005.
[43] Zachary Burton and Bharat Bhushan, “Hydrophobicity, Adhesion, and Friction Properties of Nanopatterned Polymers and Scale Dependence for Micro- and Nanoelectromechanical Systems,” nano letters vol.5, No. 8, pp. 1607–1613, 2005
[44] F. Robbe-Valloire, M. Barquins, “Adhesive contact and kinetics of adherence between a rigid cylinder and an elastomeric soild,” International Journal of Adhesion and Adhesive, pp. 29–34, 1998
[45] Fuqian Yang, “Adhesive contact between an elliptical rigid flat-ended punch and an elastic half space,” Journal of Physic D: Applied physics, pp.1211-1214, 2005
[46] H.D. Espinosa, B.C.Prorok, B.Peng, “Plasticity size effects in free-standing submicron polycrystalline FCC -films subjected to pure tension,” Journal of the Mechanics and Physics of Solids 52, pp. 667 – 689, 2004
[47] William F. Hosford, “Mechanical Behavior of Materials,” Cambridge University Press, 2005