簡易檢索 / 詳目顯示

研究生: 賴惟揚
Wei-Yang Lai
論文名稱: 摩擦對金屬直接奈米壓印之影響
Friction Effect on Metallic Pattern Formation by Using Direct Nanoimprint
指導教授: 宋震國
Cheng-Kuo Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 104
中文關鍵詞: 奈米壓印摩擦成型
外文關鍵詞: nanoimprint, friction, formation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用金屬直接奈米壓印製程,製作奈米等級鋁金屬結構,並且藉由分子動力學模擬,討論在各種幾何與製程參數 下,模具之受力狀況;參數包含模具線寬節距比與薄膜厚度以及不同下壓速度,並且假定模具與薄膜間剪應力為摩擦力之作用,因此在分子動力學模擬中,觀察模具兩側表面原子之受力,來說明奈米壓印製程中摩擦對模具之影響,另外上述提及幾何因子與製程參數不僅摩擦力受到影響同時對於成型品質也隨之改變。
      為了確認分子動力學模擬的結果,實驗上則是採用電子束製作奈米結構的矽模具,並使用金屬直接奈米壓印在不同薄膜厚度之鋁薄膜,得到奈米級微結構,壓印完成後利用原子力顯微鏡以及電子顯微鏡觀察所得到金屬幾何結構,並使用奈米壓痕機量測所需薄膜性質及壓印環境,藉由不同幾何結構之模具與不同厚度之薄膜,在成型結果與模擬結果上,其定性分析成一致現象;因此在未來也許能提供奈米壓印製程調校與壓印機台設計時之參考。


    This thesis presents a study on the forces generated between the mold and thin film and their impacts on the formation of nano-scale structures on aluminum thin film by using direct nanoimprint. Molecular dynamics (MD) simulation is first employed to investigate how the forces acting on the mold in different geometrical and fabricating conditions. The former includes the thin-film thickness and the ratio of line width and pitch of the patterns, while the latter is the imprinting speed. Since we assume that the shear force between two contacting surfaces only causes the friction force, we select two layers of atoms above the bottom two layers from the side of the mold to calculate the friction force in order to differentiate from the plowing force. In addition, the aforementioned geometrical and fabricating factors that influence the friction force, which, in turn, affects the quality of formation are studied systematically.
    For the verification of MD simulation results, we conduct the nanoindentation and nanoimprint experiments correspondingly. The mold and aluminum thin film are first fabricated. Then, we characterize the material properties of the thin film by using nanoindentation and measure the geometrical profiles of both mold and thin film by using SEM and AFM. We then perform nanoindentation and nanoimprint experiments on the thin films with various thicknesses by different molds. Then, observe the patterns being imprinted on the thin film. Consequently, the results of MD simulation and experiment correspond well, that may provide valuable guidelines for the design of direct nanoimprint.

    目錄 中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 IX 表目錄 XIV 符號解釋 XV 第一章 緒論 1-1 前言-------------------------------------------------1 1-2 研究動機---------------------------------------------2 1-3 文獻回顧---------------------------------------------3 1-3-1摩擦實驗與相關模擬------------------------------3 1-3-2黏滯實驗與相關模擬------------------------------6 1-4 本文內容---------------------------------------------8 第二章 古典黏滯理論 2-1發展背景----------------------------------------------9 2-2黏滯力形成原因---------------------------------------10 2-3 Hertzian理論----------------------------------------13 2-4 Johnson-Kendall-Roberts-Sperling理論----------------14 2-5 Derjaguin-Muller-Toporov理論------------------------15 2-6 Burnham-Colton-Pollock理論--------------------------16 2-7 Maugis理論------------------------------------------17 2-8五種理論比較-----------------------------------------19 2-9接觸面積---------------------------------------------20 2-10分離力----------------------------------------------21 第三章 系統模型與計算方式 3-1分子動力學模型---------------------------------------24 3-1-1分子動力學之基本背景----------------------------24 3-1-2原子間勢能函數----------------------------------24 3-1-3參數無因次化-----------------------------------25 3-1-4模擬流程圖-------------------------------------26 3-2模擬參數與基準參數-----------------------------------28 3-3摩擦定義與計算方式-----------------------------------30 3-3-1模具摩擦力之起始點與終點------------------------32 3-3-2摩擦係數之討論與說明----------------------------34 3-4原子溫度計算方法簡介---------------------------------37 3-4-1原子溫度計算方法之時間概念----------------------37 3-4-2原子溫度計算方法之空間概念----------------------38 第四章 模擬結果 4-1下壓過程結果與討論----------------------------------41 4-1-1線寬節距比對模具側壁受力之影響------------------41 4-1-2薄膜厚度與模具受力之影響------------------------44 4-1-3下壓速度對模具摩擦受力之影響--------------------46 4-1-4摩擦與薄膜原子溫度關係--------------------------49 4-1-5摩擦與薄膜原子堆積高度關係---------------------52 4-1-6結合能對模具受摩擦力之影響---------------------54 4-2拔模過程模擬結果與討論------------------------------56 4-2-1線寬對分離力之影響 ----------------------------56 4-2-2線寬對模具底部分離力之影響---------------------61 4-3模擬結果總結----------------------------------------64 4-3-1下壓過程模具受力-------------------------------64 4-3-2拔模過程模具受力總結---------------------------65 第五章 實驗準備與流程 5-1實驗目的-------------------------------------------66 5-2實驗規劃及實驗參數---------------------------------66 5-2-1奈米壓痕實驗-----------------------------------66 5-2-2奈米壓印實驗-----------------------------------67 5-3模具及薄膜製備-------------------------------------68 5-3-1模具製備---------------------------------------68 5-3-2薄膜製備---------------------------------------69 5-4實驗流程及量測參數---------------------------------70 5-4-1奈米壓痕實驗-----------------------------------70 5-4-2奈米壓印實驗-----------------------------------71 第六章 奈米壓痕與壓印結果與討論 6-1實驗前模具與薄膜量測-------------------------------74 6-1-1模具量測結果-----------------------------------74 6-1-2金屬薄膜之厚度及表面粗糙度---------------------79 6-1-3金屬薄膜之楊氏係數與硬度-----------------------80 6-2奈米壓痕之其他實驗結果-----------------------------80 6-3奈米壓印實驗後之量測結果與討論---------------------82 6-3-1薄膜成型結果-----------------------------------82 6-3-2薄膜成型結果討論-------------------------------92 6-4奈米壓痕與壓印實驗總結-----------------------------98 第七章 結論及未來工作 7-1結論-----------------------------------------------99 7-2未來工作 ------------------------------------------99 參考文獻------------------------------------------------101 圖目錄 圖1-1 奈米壓印示意圖[1]-----------------------------------1 圖1-2金屬偏光板示意圖-------------------------------------2 圖1-3(a)-(d)力量與下壓深度關係圖[8]-----------------------4 圖1-4(a)摩擦力與負載關係圖(b)摩擦係數與黏滞力關係圖[9]----5 圖1-5奈米壓印中步階位置圖[10]----------------------------5 圖1-6(a)壓印前鎳模具圖[11] (b)損壞後鎳模具圖[11]----------6 圖1-7三種材料抗沾黏效果實驗圖[13]------------------------7 圖2-1分子間吸引力示意圖[23]-----------------------------11 圖2-2分子間吸引能量表示圖[23]---------------------------12 圖2-3兩無限大平板吸引力圖[23]---------------------------12 圖2-4粒子對平板吸引力圖[23]------ ----------------------13 圖2-5概要圖解與SEM影像下,JKR與DMT理論之比較[20]------16 圖2-6力量壓深曲線圖[32]----------------------------------17 圖2-7 Maugis理論中不同λ趨勢圖[32]------ ----------------18 圖2-8周圍環狀區域寬度與接觸面積半徑示意圖[19]------------18 圖3-1分子動力學流程圖-----------------------------------27 圖3-2(a)奈米壓印之物理模型(等角視圖) --------------------30 圖3-2(b)奈米壓印之物理模型(側視圖)-----------------------30 圖3-3模具側邊摩擦力面積示意圖(a)------------------------31 圖3-3模具側邊摩擦力面積示意圖(a)------------------------31 圖3-4(a)下壓深度5.25位置圖-------------------------------33 圖3-4(b)下壓深度9.625位置圖------------------------------33 圖3-4(c)下壓深度10.5位置圖-------------------------------33 圖3-4(d)下壓深度14.0位置---------------------------------33 圖3-5下壓深度與側邊單位面積受力圖------------------------33 圖3-6 下壓深度與摩擦係數關係圖---------------------------34 圖3-7摩擦係數峰值示意圖---------------------------------35 圖3-8(a)摩擦係數仿巨觀與直接計算比較圖-------------------36 圖3-8(b)摩擦係數仿巨觀與直接計算比較圖-------------------37 圖3-9時間概念計算溫度示意圖-----------------------------38 圖3-10空間概念計算溫度示意圖----------------------------39 圖3-11(a)直接計算原子溫度圖------------------------------40 圖3-11(a)直接計算原子溫度圖------------------------------40 圖4-1線寬節距比示意圖-----------------------------------42 圖4-2線寬節距比與平均側邊受力關係圖----------------------43 圖4-3線寬節距比-原子分佈示意圖--------------------------43 圖4-4不同薄膜厚度-模具受力與時間步階關係---------------44 圖4-5薄膜厚度與模具側壁正向力關係圖----------------------45 圖4-6(a) 不同速度與模具側邊摩擦力表示圖------------------46 圖4-6(b) 不同速度與模具平均側邊摩擦力表示圖--------------46 圖4-7(a)速度與摩擦力關係圖[31]---------------------------47 圖4-7(b)速度與摩擦力關係圖[34]---------------------------47 圖4-8金屬薄膜原子彈塑性變形示意圖-----------------------47 圖4-9模具底部受力關係圖----------------------------------48 圖4-10(a)模具周遭原子在下壓深度8.166(DistNi)示意圖-------49 圖4-10(b)模具周遭原子在下壓深度10.5(DistNi)示意圖--------50 圖4-10(c)模具周遭原子在下壓深度14(DistNi)示意圖----------50 圖4-11(a)下壓深度與溫度關係圖----------------------------51 圖4-11(b)下壓速度與溫度關係圖----------------------------50 圖4-11(c)摩擦力與溫度關係圖------------------------------51 圖4-12(a)摩擦係數與擠壓高度關係圖[39]--------------------52 圖4-12(b)摩擦係數與擠壓高度關係圖[40]--------------------52 圖4-13 摩擦力影響擠壓高度示意圖--------------------------52 圖4-14 不同速度擠壓高度模擬圖----------------------------53 圖4-15結合能與受力比較圖--------------------------------54 圖4-16不同結合能跳躍接觸點示意圖-------------------------55 圖4-17(a)結合能與摩擦力關係圖----------------------------55 圖4-17(b)結合能與模具週遭原子溫度圖----------------------55 圖4-18結合能與擠壓高度關係圖----------------------------56 圖4-19拔模階段模具位置與受力狀態圖-----------------------57 圖4-20(a)黏滯與曲率半徑關係圖[9]-------------------------57 圖4-20(b)黏滯與曲率半徑關係圖[43]------------------------57 圖4-21長方體近似圓柱體表示圖-----------------------------59 圖4-22最大分離力與簡曲率半徑立方根關係圖-----------------59 圖4-23時間步階與模具受力關係圖---------------------------60 圖4-24方程式近似示意圖[45]------------------------------62 圖4-25模具底部選取示意圖--------------------------------62 圖4-26 幾何形狀近似示意圖-------------------------------63 圖4-27模具底部之最大分離力與幾何形狀關係圖--------------63 圖4-28模具線寬寬度與單位面積受力關係圖------------------64 圖5-1模具製造流程圖--------------------------------------68 圖5-2 直流式真空濺鍍機示意圖-----------------------------69 圖5-3實驗流程圖-----------------------------------------73 圖6-1,6-2製備之Si模具等角視圖與上視圖------------------76 圖6-3模具之AFM量測圖-------------------------------------78 圖6-4 AFM表面粗糙度量測圖-------------------------------79 圖6-5薄膜厚度與壓深關係圖-------------------------------81 圖6-6壓印成型量測示意圖---------------------------------83 圖6-7成型結果拍攝圖--------------------------------------90 圖6-8成型結果分析圖--------------------------------------93 圖6-9薄膜厚度192nm成型結果圖----------------------------94 圖6-10薄膜厚度466nm成型結果圖--------------------------95 圖6-11線寬節距比0.275之不同厚度成型結果圖--------------96 圖6-12不同膜厚之有限元素分析[42]------------------------97 表目錄 表1-1模具生命週期表------------------------------------- 6 表1-2表面能比較表----------------------------------------7 表2-1五種理論比較表-------------------------------------19 表3-1 系統模擬之無因次化表------------------------------26 表3-2(a)鎳材料的Morse勢能各參數值[26]-------------------29 表3-2(a)鋁材料的Morse勢能各參數值[26]-------------------29 表5-1 實驗前後量測項目表---------------------------------71 表5-2 各項使用儀器名稱及來源---------------------------- 72 表6-1模具尺寸表-----------------------------------------75 表6-2薄膜厚度量測表-------------------------------------79 表6-3 不同膜厚之金屬薄膜量測結果-------------------------80 表6-4速度與負載關係-------------------------------------82 表6-5成型結果表-----------------------------------------91 符號解釋 Amax 最大接觸面積 a 接觸面積半徑 a0 比例常數 a1 橢圓型長軸 a2 橢圓形短軸 b0 體積常數 D 結合能 DAl 鋁原子間結合能 DNi 鎳原子間結合能 DistNi 鎳晶格特徵長度 d 分子直徑 d0 分子間距離 E1 針頭楊氏係數 E2 薄膜楊氏係數 Ek 動能 F 力量 Fc 分離力 Fb 脆性分離力 Fd 延性分離力 G 剪彈模數 H 硬度 h 普朗克常數 h0 偏光板高度 hω 漢米克常數 K 簡彈係數 K0 材料參數 Kcm 質心動能 Ki(t) 時間概念所得動能值 Ktotal 截斷半徑內總動能 k 波茲曼常數 ki 空間概念所得動能值 L 線寬 M 分子量 M0 材料參數 m 分子質量 mi 第i顆原子質量 N 粒子數 NA 亞佛迦覺常數 n 截斷半徑內原子顆數 n0 分子數 P 壓力 Pmax 最大負載 PvdW 無限大平板間吸引力 p 節距 q1 每立方公分原子數 R 簡曲率半徑 R0 常數 r 反射光 r0 平衡距離 r1 探針曲率半徑 r2 薄膜變形後曲率半徑 rAl 鋁原子間平衡距離 rNi 鎳原子間平衡距離 S 間距 T 系統絕對溫度 Ti 原子溫度值 時間概念所得溫度值 U 光源 V 體積 VA 吸引能量 Vi 第i顆原子速度 Vix 第i顆原子X方向速度 Viy 第i顆原子Y方向速度 Viz 第i顆原子Z方向速度 Vx 質量中心X方向速度 Vy 質量中心Y方向速度 Vz 質量中心Z方向速度 在 時i原子速度 v 分子速度 X 透射光 Y 降伏強度 z0 原子平衡距離 α 極化能 β 幾何參數 ε 應變 應變率 ρ 密度 σ 應力 δ 穿透深度 Φ(r) 勢能函數 υ 波松比 υ0 特徵頻率 ν1 針頭波松比 ν2 薄膜波松比 ω 分離能

    參考文獻

    [1] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom,” Nanoimprint lithography”, J. Vac. Sci. Technol. B 14(6), pp. 4129–4133, 1996
    [2] Douglas P. Hansen, Orem, Utaj; John Gunther, Torrance, Galif,” Polarizer Appratus for Producing a Generally Polarized Beam of Light”, United States Patent, 2000
    [3] 許時嘉,”設計與製作高效率平面型偏極光分光器以應用於整合型導光板之偏光轉換器”,國立交通大學 碩士論文, p.73–78,2003
    [4] Jian JimWang, Jiandong Deng, Xuegong Deng, Feng Liu, Paul Sciortino, Lei Chen, Anguel Nikolov, and Alan Graham”, Innovative High-Performance Nanowire-Grid Polarizers and Integrated Isolators”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 1, pp. 241-253, 2005
    [5] 謝志瑋,” 奈米金屬壓印應用於偏光板研究報告”,清華大學精密傳動實驗室奈米小組研討內容, 2005
    [6] J. Yang, K. Komvopoulos,” A Molecular Dynamics Analysis of Surface Interference and Tip Shape and Size Effects on Atomic-Scale Friction”, Journal of Tribology Vol. 127, pp. 513-520, 2005
    [7] Y.-R. Jeng, P.-C. Tsai and T.-H. Fang,” Molecular dynamics studies of atomic-scale tribological characteristics for different sliding systems”, Tribology Letters, Vol. 18, No. 3, p. 315-329, 2004
    [8] Y.-R. H. Zhang, K. Ono,” Molecular dynamics study of dynamic contact and separation between tip and disk surface”, Tribology International Vol. 36, pp. 361-365, 2003
    [9] Eui-Sung Yoon, Seung Ho Yang, Hung-Gu Han, Hosung Kong,” An experimental study on the adhesion at a nano-contact”, Wear Vol. 254, pp. 974-980, 2003
    [10] Ji-Hoon Kang, Kwang-Seop Kim and Kyung-Woong Kim,” Effects of adhesion and friction on the pattern transfer in nanoimprint lithography : A molecular dynamics simulation”, Proceedings of WTC2005 World Tribology Congress III, September 12-16, 2005

    [11] Y. Tian, P. Zhang, G. Liu, X. Tian,” The lifetime comparison of Ni and Ni-PTFE moulding inserts with high aspect-ratio structure”, Microsystem Technologies Vol. 11, pp. 261-264, 2005
    [12] Namseok Lee, Young-Kyu Kim and Shinill Kang,” Temperature dependence of anti-adhesion between a stamper with sub-micron patterns and the polymer in nano-moulding processes” , Journal of Physics D: Applied Physics Vol. 37, pp. 1624–1629, 2004
    [13] Sunggook Park, Helmut Schift, Celestino Padeste, Bernhard Schnyder Rudiger Kotz, Jens Gobrecht,” Anti-adhesive layers on nickel stamps for nanoimprint lithography” , S. Park et al. / Microelectronic Engineering , pp. 196–201, 2004
    [14] Yanping Li, D.Y. Li,” Electron work function, adhesion, and friction between 3d transition metals under light loads“ , Wear 259, pp. 1432–1436, 2005
    [15] A.R. Miedema, Surface energies of solid metals, Z. Metallkd 69, pp. 287–292, 1978
    [16] O. Tomagnini, F. Ercolessi, and E.Tosatti,” Microscopic interaction between a gold tip and a Pb( 110) surface” , Surface Science 287/288, pp. 1041-1045, 1993
    [17] H. Rafii-Tabar, T. Rawazoe,” Dynamics of Atomically Thin Layer-Surface Interactions in Tip-Substrate Geometry”, Jpn. J. Appl. Phy. Vol. 32 Pt.1, 3B, p. 1394–1400, 1993
    [18] K. L. Johnson and J. A. Greenwood,” An Adhesion Map for the Contact of Elastic Spheres” , Journal of Colloid and Interface Science 192, p. 326–333, 1997
    [18] Lior Kogut and Izhak Etsion,” Adhesion in elastic–plastic spherical microcontact” , Journal of Colloid and Interface Science 261 (2003) 372–378
    [19] G. V. Dedkov,” Experimental and Theoretical Aspects of the Modern Nanotribology” , phys. Stat. Sol. (a) 179, 3, pp. 5–75, 2000
    [20] 蕭志仲,” 溫度對奈米尺度下接觸物體間黏滯現象之影響:分子動力學模擬及原子力顯微鏡實驗”,國立清華大學 碩士論文, 2004
    [21] D.s.Rimai, L.P. DeMejo and K.L. Mittal,”fundamentals of adhesion and interfaces” , Utrecht, the Netherlands, p. 96–107, 1995
    [22] D. S. Rimai,a) L. P. DeMejo, and W. B. Vreeland,” Effects of thin, semi-rigid coatings on the adhesion-induced deformations between rigid particles and soft substrates” , J. Appl. Phys. 73 (2), 15 January, p. 668–672, 1993

    [23] I. Visser,” The Concept of Negative Hamaker Coefficients. 1. History and Present Status” , Advances in Cotloid Interface Science, 15, p. 157-169, 1981
    [24] D. Maugis and H. M. Pollockt,” Surface Forces, Defornation and Adherence at Metal Microcontacts” , Acra metal Vol. 32, NC. 9. pp.1323-1334, 1984
    [25] 陳星佑, “溫度效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米 壓印實驗, “國立清華大學碩士論文, 2005.
    [26] Girifalco, L. A. and Weizer, V.G., “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev. Vol. 114, No. 3, pp.687-690, 1959.
    [27] J. M. Haile, “Molecular Dynamics Simulation,” John Wiley & Sons, New York, 1997.
    [28] Igor Stankovic, Siegfried Hess,” Microscopic structure, dynamics, and wear at metal-metal interfaces in sliding contact”, The American Physical Society 066139, pp. 1-13, 2004
    [29] C. F. McFadden, A. J. Gellman,“Metallic friction: the influence of atomic adsorbates at submonolayer coverages” , Surface Science 391, pp. 287–299, 1997
    [30] M. Debski, M.E.R. Shanahan, J. Schultz,” Mechanisms of contaminant elimination by off-accommodating adhesives Part 1: Displacement and absorption” , INT. J. Adhesion and Adhesives July Vol.6 No.3, pp. 145–149, 1986
    [32] B. Bhushan, “Handbook of Micro/Nano Tribology,” 2nd Ed., CRC Press, Boca Raton, pp. 261–270, 1995
    [33] Nikhil S Tambe and Bharat Bhushan, “Friction model for the velocity dependence of nanoscale friction,” Nanotechnology 16, pp. 2309–2324, 2005
    [34] Mykhaylo Evstigneev and Peter Reimann, “Rate description of the stick-slip motion in friction force microscopy experiments,” Physical Review E Vol. 71, 056119, pp.1-7, 2005
    [35] M. Mata, J. Alcal, “The role of friction on sharp indentation,” Journal of the Mechanics and Physics of Solids 52, pp.145-165, 2004
    [36] S. Berg and D. Johannsmann, “High Speed Microtribology with Quartz Crystal Resonators,” Physical Review Letters Vol. 91, Number 14, 145505, pp.1-3, 2003

    [37] Keiji Hayashi , Noriyuki Sakudo , Toshio Kawai, “A new measure of local temperature distribution in non-equilibrium molecular dynamics simulation of friction,” Surface and Coatings Technology 83, pp. 313-316, 1996
    [38] B. Li, P.C. Clapp, J.A. Rifkin, X.M. Zhang, “Molecular dynamics calculation of heat dissipation during sliding friction,” International Journal of Heat and Mass Transfer Vol. 46, pp. 37–43, 2003
    [39] B. Taljat, G.M. Pharr, “Development of pile-up during spherical indentation of elastic–plastic solids,” International Journal of Solids and Structures Vol. 41, pp. 3891–3904, 2004
    [40] Gabriella Bolzon, Giulio Maier, Michele Panico, “Material model calibration by indentation, imprint mapping and inverse analysis,” International Journal of Solids and Structures Vol. 41, pp. 2957–2975, 2004
    [41] 謝雲亮, “尺寸效應對奈米級金屬壓印成型性之影響-分子動力學模擬與奈米壓印實驗, “國立清華大學碩士論文, 2005.
    [42] 張瑞中, “模具線寬與薄膜厚度對於金屬微壓印成形特性之實驗與數值研究 , “國立中正大學碩士論文, 2005.
    [43] Zachary Burton and Bharat Bhushan, “Hydrophobicity, Adhesion, and Friction Properties of Nanopatterned Polymers and Scale Dependence for Micro- and Nanoelectromechanical Systems,” nano letters vol.5, No. 8, pp. 1607–1613, 2005
    [44] F. Robbe-Valloire, M. Barquins, “Adhesive contact and kinetics of adherence between a rigid cylinder and an elastomeric soild,” International Journal of Adhesion and Adhesive, pp. 29–34, 1998
    [45] Fuqian Yang, “Adhesive contact between an elliptical rigid flat-ended punch and an elastic half space,” Journal of Physic D: Applied physics, pp.1211-1214, 2005
    [46] H.D. Espinosa, B.C.Prorok, B.Peng, “Plasticity size effects in free-standing submicron polycrystalline FCC -films subjected to pure tension,” Journal of the Mechanics and Physics of Solids 52, pp. 667 – 689, 2004
    [47] William F. Hosford, “Mechanical Behavior of Materials,” Cambridge University Press, 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE