簡易檢索 / 詳目顯示

研究生: 陳威文
Chen, Wei-Wen
論文名稱: 同調拉曼顯微術應用於活體生物系統中脂質代謝之研究
Lipid metabolism in live biological systems studied by coherent anti-Stokes Raman scattering (CARS) microscopy
指導教授: 張大釗
Chang, Ta-Chau
倪其焜
Ni, Chi-Kung
口試委員: 謝佳龍
Hsieh, Chia-Lung
陳壁彰
Chen, Bi-Chang
吳益群
Wu, Yi-Chun
廖仲麒
Liao, Jung-Chi
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 94
中文關鍵詞: 非線性光學同調拉曼顯微術脂質巨噬細胞線蟲同調反史托克拉曼
外文關鍵詞: nonlinear optics, coherent Raman microscopy, lipid, macrophages, C. elegans, coherent anti-Stokes Raman
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脂質分子在生物中具有許多重要功能,例如作為細胞或胞器膜的材料、提供能量的來源、或是成為在不同訊息途徑中的訊息因子。但另一方面,過多的脂質分子的累積卻會造成不同慢性疾病,例如:動脈粥狀硬化、心血管疾病、慢性肝或腎疾病。因此,研究與了解脂質在生物體中的代謝是一個重要議題。
    長久以來,脂質分子就被認為是一種"隱形的分子",因為脂質分子是透明的、不發出螢光、而且不易在活體生物中用螢光染劑染色的分子,因此脂質在活體觀察時不容易被分辨出來。而同調拉曼顯微術,例如:反史托克拉曼顯微術,具有不需任何標定就可經由脂質分子中高密度碳氫鍵的振動模來偵測脂質分子的分布,因此是一種非常合適用來研究活體中脂質代謝的工具。在本篇論文中,我們將會介紹同調拉曼顯微術的架設以及在活體細胞(巨噬細胞)與活體動物(線蟲)中脂質代謝研究上的應用。
    當巨噬細胞吞噬過多的低密度脂蛋白及膽固醇後,會形成泡沫細胞,泡沫細胞的形成與動脈粥狀硬化息息相關,死亡的泡沫細胞內的脂質會累積黏在血管壁中,過多的脂質累積則形成動脈硬塊而進一步導致動脈粥狀硬化的病變。在此巨噬細胞系統中,我們利用同調拉曼顯微術去觀測活體細胞中脂肪油滴的累積,我們進一步發展了影像定量分析的方法,因此在無染色標定的活體細胞下,我們可以去量化細胞內脂質含量並與生化方法的分析結果相吻合。我們也證實此分析方法也可以應用在其他種細胞中(例如:CL1-0肺癌細胞)。最後,利用此定量分析方法,我們可以評估脂肪水解抑制劑diethylumbelliferyl phosphate的藥物動力學參數和抑制能力。這個實驗方法將有機會進一步發展成為脂質藥物的篩選平台。
    在此篇論文重點在於研究不同脂肪酸的組成成份是否會影響細胞對脂蛋白的攝取(endocytosis)。線蟲中的蛋黃脂蛋白為其主要脂質輸送載體(從腸道輸送到卵細胞),並且在演化上蛋黃脂蛋白與人類的低密度脂蛋白在是屬於同源基因(homologs),因此線蟲十分適合用於脂蛋白代謝的研究。在我們的活體線蟲研究中,我們發現用同調拉曼顯微術不論是用脂質或蛋白質的影像都可以偵測到在線蟲體腔內異常的蛋黃脂蛋白累積,而這些不正常累積可能是因為卵細胞無法正常攝取蛋黃脂蛋白而導致。我們進一步發展了影像分析方法去定量分析不同突變株(fat-1、fat-2、fat-3以及fat-4)內蛋黃脂蛋白運輸情形、其卵細胞內的脂質含量以及卵的發育情形。此外,我們也檢驗了外加不同脂肪酸給fat-2突變株(缺少所有的不飽和脂肪酸)後的影響。最後,我們的研究結果證實omega-6不飽和脂肪酸(而非omega-3不飽和脂肪酸)對於線蟲中蛋黃脂蛋白的運輸以及卵的發育過程扮演不可或缺的角色。
    這個論文工作除了展現同調拉曼顯微術是一種對於研究活體生物中脂質代謝非常有用的工具之外,也驗證了omega-6不飽和脂肪酸在脂蛋白的代謝上扮演相當重要的角色。我們相信在活體生物中研究脂質代謝相關課題將能幫助我們去發掘更多潛在基因或代謝途徑,讓我們在未來有可能找到更好的方式去治療脂質代謝相關的疾病。


    Lipids have various crucial functions in biological systems, such as being the building blocks of membranes, providing as fuel molecules, and acting as signaling molecules(such as steroid hormones). However, the excess intake of lipids can be one major reason that causes several chronic diseases, such as atherosclerosis, cardiovascular disease, chronic liver or kidney diseases. Therefore, it is important to study and understand the lipid metabolism in the biological systems.
    For a long time, lipids have been regarded as “the invisible molecules” for in vivo observation because they are transparent, intrinsically non-fluorescent, and difficult to be tagged with fluorophores. Coherent Raman technique, such as coherent anti-Stokes Raman scattering (CARS) microscopy, provides a label-free way to specifically visualize biomolecules, particularly for detecting lipids, in living organisms at subcellular resolution, which makes it a powerful tool for the study of lipid metabolism and lipid biology. In this thesis, we will present the construction of CARS microscopy and the studies of lipid metabolism in the live cell system (macrophages) and in live animal model (C. elegans).
    The accumulation of lipid in macrophages is a key factor that promotes the formation of atherosclerotic lesion. In the study of live cell system (macrophages), we developed an automated quantitative analysis method for the real-time assessment of lipid content in living macrophages. This method can monitor the lipid accumulation and hydrolysis in the living cells in real time at single-cell level without any labeling. We showed that this method can also be applied to other type of cells such as lung cancer cells (CL1-0), which broadens the possible applications of this method. Finally, we demonstrated its potential for kinetic study of drugs and for high-throughput screening of lipid therapeutic agents.
    To verify the question – whether the composition of fatty acids affects the uptake of lipoprotein, we chose C. elegans as a model animal for the study because the yolk lipoprotein in C. elegans is homologous human low-density lipoprotein (LDL) and both of them (yolk lipoprotein and LDL) act the same function, as the major lipid carrier delivering lipid into cells. In the study of live animal model (C. elegans), we first demonstrated that the abnormal accumulation of secreted yolk lipoprotein in the pseudocoelom of live C. elegans can be detected by CARS microscopy at both protein (~1665 cm−1) and lipid (~2845 cm−1) Raman bands. In addition, we developed image analysis protocols to quantitatively measure the abnormal accumulation of secreted yolk lipoprotein and the oocyte lipid content in PUFA-deficient fat mutants (fat-1, fat-2, fat-3, fat-4) and PUFA-supplemented fat-2 worms (the PUFA add-back experiments). Our results reveal that the omega-6 PUFAs, not omega-3 PUFAs, play a critical role in modulating lipid/yolk level in the oocytes and regulating reproductive efficiency of C. elegans.
    This thesis work not only demonstrates that CARS microscopy is a useful technique for the label-free examination of lipid metabolism in live biological systems but also elucidates that omega-6 PUFA is a key factor that strongly influences the uptake of lipoprotein in the biological systems. We believe that the extensive and intensive researches based on live cell/animal model will help us to understand the genetics as well as metabolic pathways in lipid biology, and will possibly find a way to tackle human lipid metabolic diseases in the future.

    摘要 I Abstract III Chapter 1 Coherent anti-Stokes Raman scattering (CARS) microscopy 1 1.1 Introduction to CARS microscopy 1 1.2 Setup of our CARS microscope 4 1.3 Calibration data of our CARS microscope 5 Chapter 2 Live cell system – macrophages 8 2.1 Macrophages and atherosclerosis 8 2.2 Optimization of CARS imaging wavelengths 9 2.3 Characterization of CARS intensity 10 2.4 Automated quantitative analysis of cellular lipid content 12 2.5 Kinetic analysis of lipid dynamics in live macrophages 14 2.6 Discussion 16 2.7 Summary 18 Chapter 3 Live animal model – Caenorhabditis elegans 19 3.1 An emerging animal model for lipid biology: C. elegans 19 3.2 Lipid transportation and the development of oocytes in C. elegans 20 3.3 Our hypothesis and designed experiments 22 3.4 Characterization of lipid storage in C. elegans 23 3.5 Detection of abnormal yolk lipoprotein accumulation by CARS 23 3.6 Quantitative analysis of abnormal yolk lipoprotein accumulation 25 3.7 Time-dependent increase of yolk lipoprotein accumulation 26 3.8 Examination of yolk lipoprotein accumulation in mutants 27 3.9 Quantitative analysis of lipid delivery into oocytes 28 3.10 Examination of oocyte lipid content in mutants 29 3.11 Examination of the development of oocytes 30 3.12 Discussion 33 3.13 Summary 36 Chapter 4 Conclusion 38 Figures 40 Figure 1.1 40 Figure 1.2 41 Figure 1.3 43 Figure 1.4 44 Figure 1.5 45 Figure 1.6 46 Figure 2.1 47 Figure 2.2 48 Figure 2.3 49 Figure 2.4 50 Figure 2.5 51 Figure 2.6 52 Figure 2.7 53 Figure 2.8 54 Figure 2.9 55 Figure 2.10 56 Figure 3.1 57 Figure 3.2 58 Figure 3.3 59 Figure 3.4 60 Figure 3.5 61 Figure 3.6 62 Figure 3.7 63 Figure 3.8 65 Figure 3.9 66 Figure 3.10 67 Figure 3.11 68 Figure 3.12 69 Figure 3.13 70 Figure 3.14 71 Figure 3.15 72 Figure 3.16 73 Figure 3.17 74 Figure 3.18 75 Movie 76 Movie 1 76 Reference 77 Appendix I 85 Appendix II: Materials and chemicals used in this thesis work 92 Publication list 94

    1. Day, J.P., et al., Quantitative coherent anti-Stokes Raman scattering (CARS) microscopy. J Phys Chem B, 2011. 115(24): p. 7713-7725.
    2. Eesley, G.L., Coherent Raman-Spectroscopy. Journal of Quantitative Spectroscopy & Radiative Transfer, 1979. 22(6): p. 507-576.
    3. Cheng, J.X. and X.S. Xie, Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications. Journal of Physical Chemistry B, 2004. 108(3): p. 827-840.
    4. Shen, Y.R., The Principles of Nonlinear Optics. 1984: Wiley Interscience: New York.
    5. Shirley, J.A., R.J. Hall, and A.C. Eckbreth, Folded Boxcars for Rotational Raman Studies. Optics Letters, 1980. 5(9): p. 380-382.
    6. Duncan, M.D., J. Reintjes, and T.J. Manuccia, Scanning Coherent Anti-Stokes Raman Microscope. Optics Letters, 1982. 7(8): p. 350-352.
    7. Zumbusch, A., G.R. Holtom, and X.S. Xie, Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Physical Review Letters, 1999. 82(20): p. 4142-4145.
    8. Kawagishi, M., et al., Direct label-free measurement of the distribution of small molecular weight compound inside thick biological tissue using coherent Raman microspectroscopy. Scientific Reports, 2015. 5:13868.
    9. Pope, I., et al., Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds. Nature Nanotechnology, 2014. 9(11): p. 940-946.
    10. Camp, C.H., et al., High-speed coherent Raman fingerprint imaging of biological tissues. Nature Photonics, 2014. 8(8): p. 627-634.
    11. Evans, C.L. and X.S. Xie, Coherent Anti-Stokes Raman Scattering Microscopy: Chemical Imaging for Biology and Medicine. Annual Review of Analytical Chemistry, 2008. 1: p. 883-909.
    12. Streets, A.M., et al., Imaging without fluorescence: nonlinear optical microscopy for quantitative cellular imaging. Anal Chem, 2014. 86(17): p. 8506-13.
    13. Camp, C.H. and M.T. Cicerone, Chemically sensitive bioimaging with coherent Raman scattering. Nature Photonics, 2015. 9(5): p. 295-305.
    14. Alfonso-Garcia, A., et al., Biological imaging with coherent Raman scattering microscopy: a tutorial. J Biomed Opt, 2014. 19(7): p. 71407.
    15. Pezacki, J.P., et al., Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat Chem Biol, 2011. 7(3): p. 137-45.
    16. Le, T.T., S. Yue, and J.X. Cheng, Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy. J Lipid Res, 2010. 51(11): p. 3091-102.
    17. Tu, H.H. and S.A. Boppart, Coherent anti-Stokes Raman scattering microscopy: overcoming technical barriers for clinical translation. Journal of Biophotonics, 2014. 7(1-2): p. 9-22.
    18. Tanabe, K. and J. Hiraishi, Raman Linewidth Study of Molecular-Interactions in Mixtures of Hexafluorobenzene with Benzene and with Mesitylene. Journal of Raman Spectroscopy, 1982. 12(3): p. 274-277.
    19. Leading causes of death in Taiwan (2014). Available from: http://www.mohw.gov.tw/cht/DOS/DisplayStatisticFile.aspx?d=49775&s=1.
    20. Leading causes of death in the world. Available from: http://www.who.int/mediacentre/factsheets/fs310/en/.
    21. Glass, C.K. and J.L. Witztum, Atherosclerosis: The road ahead. Cell, 2001. 104(4): p. 503-516.
    22. Woollard, K.J. and F. Geissmann, Monocytes in atherosclerosis: subsets and functions. Nature Reviews Cardiology, 2010. 7(2): p. 77-86.
    23. Moore, K.J. and I. Tabas, Macrophages in the Pathogenesis of Atherosclerosis. Cell, 2011. 145(3): p. 341-355.
    24. Maxfield, F.R. and I. Tabas, Role of cholesterol and lipid organization in disease. Nature, 2005. 438(7068): p. 612-21.
    25. Ouimet, M. and Y.L. Marcel, Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler Thromb Vasc Biol, 2012. 32(3): p. 575-81.
    26. Cuchel, M. and D.J. Rader, Macrophage reverse cholesterol transport - Key to the regression of atherosclerosis? Circulation, 2006. 113(21): p. 2548-2555.
    27. Zhao, B., et al., Redistribution of macrophage cholesteryl ester hydrolase from cytoplasm to lipid droplets upon lipid loading. Journal of Lipid Research, 2005. 46(10): p. 2114-2121.
    28. Okazaki, H., et al., Identification of Neutral Cholesterol Ester Hydrolase, a Key Enzyme Removing Cholesterol from Macrophages. Journal of Biological Chemistry, 2008. 283(48): p. 33357-33364.
    29. Sekiya, M., et al., Ablation of neutral cholesterol ester hydrolase 1 accelerates atherosclerosis. Cell Metab, 2009. 10(3): p. 219-28.
    30. Ishikawa, T.T., et al., Quantitative-Analysis of Cholesterol in 5 to 20 Mu1 of Plasma. Journal of Lipid Research, 1974. 15(3): p. 286-291.
    31. Stclair, R.W., B.P. Smith, and L.L. Wood, Stimulation of Cholesterol Esterification in Rhesus-Monkey Arterial Smooth-Muscle Cells. Circulation Research, 1977. 40(2): p. 166-173.
    32. Lu, K.Y., et al., Erythropoietin Suppresses the Formation of Macrophage Foam Cells Role of Liver X Receptor alpha. Circulation, 2010. 121(16): p. 1828-1837.
    33. Koren, E., et al., Analysis of Cholesterol Ester Accumulation in Macrophages by the Use of Digital Imaging Fluorescence Microscopy. Atherosclerosis, 1990. 85(2-3): p. 175-184.
    34. van de Poll, S.W.E., et al., In situ investigation of the chemical composition of ceroid in human atherosclerosis by Raman spectroscopy. Journal of Raman Spectroscopy, 2002. 33(7): p. 544-551.
    35. van Manen, H.J. and C. Otto, Cholesterol esters are detected by Raman microspectroscopy in HeLa cells. Journal of Raman Spectroscopy, 2009. 40(2): p. 117-118.
    36. Hawi, S.R., et al., Raman microspectroscopy of intracellular cholesterol crystals in cultured bovine coronary artery endothelial cells. Journal of Lipid Research, 1997. 38(8): p. 1591-1597.
    37. Baraga, J.J., M.S. Feld, and R.P. Rava, Insitu Optical Histochemistry of Human Artery Using near-Infrared Fourier-Transform Raman-Spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 1992. 89(8): p. 3473-3477.
    38. Lotem, H., R.T. Lynch, and N. Bloembergen, Interference between Raman Resonances in 4-Wave Difference Mixing. Physical Review A, 1976. 14(5): p. 1748-1755.
    39. Cheng, J.X., et al., Multiplex Coherent Anti-Stokes Raman Scattering Microspectroscopy and Study of Lipid Vesicles. The Journal of Physical Chemistry B, 2002. 106(34): p. 8493-8498.
    40. Wu, Y.M., et al., Quantitative Assessment of Hepatic Fat of Intact Liver Tissues with Coherent Anti-Stokes Raman Scattering Microscopy. Analytical Chemistry, 2009. 81(4): p. 1496-1504.
    41. Kapur, J.N., P.K. Sahoo, and A.K.C. Wong, A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram. Computer Vision Graphics and Image Processing, 1985. 29(3): p. 273-285.
    42. Chen, W.W., et al., Automated quantitative analysis of lipid accumulation and hydrolysis in living macrophages with label-free imaging. Anal Bioanal Chem, 2013. 405(26): p. 8549-8559.
    43. Weibel, G.L., et al., Cytoskeleton disruption in J774 macrophages: Consequences for lipid droplet formation and cholesterol flux. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids, 2012. 1821(3): p. 464-472.
    44. Brown, A.J., et al., Cholesterol and oxysterol metabolism and subcellular distribution in macrophage foam cells: accumulation of oxidized esters in lysosomes. Journal of Lipid Research, 2000. 41(2): p. 226-236.
    45. Etzion, Y., et al., An Unbiased Chemical Biology Screen Identifies Agents That Modulate Uptake of Oxidized LDL by Macrophages. Circulation Research, 2009. 105(2): p. 148-157.
    46. Avart, S.J., et al., Cholesteryl ester hydrolysis in J774 macrophages occurs in the cytoplasm and lysosomes. J Lipid Res, 1999. 40(3): p. 405-414.
    47. Harrison, E.H., et al., Inhibitors of Neutral Cholesteryl Ester Hydrolase. Journal of Lipid Research, 1990. 31(12): p. 2187-2193.
    48. Rodrigues, A.D. and J.H. Lin, Screening of drug candidates for their drug-drug interaction potential. Current Opinion in Chemical Biology, 2001. 5(4): p. 396-401.
    49. Dixon, M., The Determination of Enzyme Inhibitor Constants. Biochemical Journal, 1953. 55(1): p. 170-171.
    50. Ishiyama, J., et al., Unsaturated FAs prevent palmitate-induced LOX-1 induction via inhibition of ER stress in macrophages. Journal of Lipid Research, 2011. 52(2): p. 299-307.
    51. Ishiyama, J., et al., Palmitic acid enhances lectin-like oxidized LDL receptor (LOX-1) expression and promotes uptake of oxidized LDL in macrophage cells. Atherosclerosis, 2010. 209(1): p. 118-124.
    52. Rumsey, S.C., et al., Oleate and Other Long-Chain Fatty-Acids Stimulate Low-Density-Lipoprotein Receptor Activity by Enhancing Acyl-Coenzyme a-Cholesterol Acyltransferase Activity and Altering Intracellular Regulatory Cholesterol Pools in Cultured-Cells. Journal of Biological Chemistry, 1995. 270(17): p. 10008-10016.
    53. Mccloskey, H.M., et al., Effect of Fatty-Acid Supplementation on Cholesterol and Retinol Esterification in J774-Macrophages. Biochimica Et Biophysica Acta, 1988. 963(3): p. 456-467.
    54. Seo, T., et al., Selective uptake from LDL is stimulated by unsaturated fatty acids and modulated by cholesterol content in the plasma membrane: Role of plasma membrane composition in regulating non-SR-BI-mediated selective lipid transfer. Biochemistry, 2002. 41(25): p. 7885-7894.
    55. Chang, C.L., et al., n-3 Fatty Acids Reduce Arterial LDL-Cholesterol Delivery and Arterial Lipoprotein Lipase Levels and Lipase Distribution. Arteriosclerosis Thrombosis and Vascular Biology, 2009. 29(4): p. 555-561.
    56. Seo, T., et al., Differential modulation of ACAT1 and ACAT2 transcription and activity by long chain free fatty acids in cultured cells. Biochemistry, 2001. 40(15): p. 4756-4762.
    57. Wenk, M.R., Lipidomics: New Tools and Applications. Cell, 2010. 143(6): p. 888-895.
    58. Aguilar, P.S. and D. de Mendoza, Control of fatty acid desaturation: a mechanism conserved from bacteria to humans. Molecular Microbiology, 2006. 62(6): p. 1507-1514.
    59. Kubagawa, H.M., et al., Oocyte signals derived from polyunsaturated fatty acids control sperm recruitment in vivo. Nature Cell Biology, 2006. 8(10): p. 1143-1183.
    60. Tamba, S., et al., Timely interaction between prostaglandin and chemokine signaling is a prerequisite for successful fertilization. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(38): p. 14539-14544.
    61. Sato, K., et al., C. elegans as a model for membrane traffic, in WormBook, T.C.e.R. Community, Editor.: WormBook.
    62. Branicky, R., et al., Lipid Transport and Signaling in Caenorhabditis elegans. Developmental Dynamics, 2010. 239(5): p. 1365-1377.
    63. Vrablik, T.L. and J.L. Watts, Emerging roles for specific fatty acids in developmental processes. Genes & Development, 2012. 26(7): p. 631-637.
    64. Han, S.M., P.A. Cottee, and M.A. Miller, Sperm and Oocyte Communication Mechanisms Controlling C. elegans Fertility. Developmental Dynamics, 2010. 239(5): p. 1265-1281.
    65. Vrablik, T.L. and J.L. Watts, Polyunsaturated fatty acid derived signaling in reproduction and development: Insights from Caenorhabditis elegans and Drosophila melanogaster. Molecular Reproduction and Development, 2013. 80(4): p. 244-259.
    66. Gill, I. and R. Valivety, Polyunsaturated fatty acids .1. Occurrence, biological activities and applications. Trends in Biotechnology, 1997. 15(10): p. 401-409.
    67. Watts, J.L. and J. Browse, Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(9): p. 5854-5859.
    68. Brock, T.J., J. Browse, and J.L. Watts, Fatty acid desaturation and the regulation of adiposity in Caenorhabditis elegans. Genetics, 2007. 176(2): p. 865-875.
    69. Edmonds, J.W., et al., Insulin/FOXO Signaling Regulates Ovarian Prostaglandins Critical for Reproduction. Developmental Cell, 2010. 19(6): p. 858-871.
    70. Hoang, H.D., et al., A Heterogeneous Mixture of F-Series Prostaglandins Promotes Sperm Guidance in the Caenorhabditis elegans Reproductive Tract. Plos Genetics, 2013. 9(1):e1003271.
    71. Johnston, W.L. and J.W. Dennis, The eggshell in the C. elegans oocyte-to-embryo transition. Genesis, 2012. 50(4): p. 333-349.
    72. Gautier, T., et al., Human luteinized granulosa cells secrete apoB100-containing lipoproteins. Journal of Lipid Research, 2010. 51(8): p. 2245-2252.
    73. Kimble, J. and W.J. Sharrock, Tissue-Specific Synthesis of Yolk Proteins in Caenorhabditis-Elegans. Developmental Biology, 1983. 96(1): p. 189-196.
    74. Smolenaars, M.M.W., et al., Molecular diversity and evolution of the large lipid transfer protein superfamily. Journal of Lipid Research, 2007. 48(3): p. 489-502.
    75. Spieth, J., et al., Vitellogenin Motifs Conserved in Nematodes and Vertebrates. Journal of Molecular Evolution, 1991. 32(5): p. 429-438.
    76. Grant, B. and D. Hirsh, Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Molecular Biology of the Cell, 1999. 10(12): p. 4311-4326.
    77. Dunning, K.R., D.L. Russell, and R.L. Robker, Lipids and oocyte developmental competence: the role of fatty acids and beta-oxidation. Reproduction, 2014. 148(1): p. R15-R27.
    78. McCarter, J., et al., On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Developmental Biology, 1999. 205(1): p. 111-128.
    79. Kim, S., C. Spike, and D. Greenstein, Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. Adv Exp Med Biol, 2013. 757: p. 277-320.
    80. Hirsh, D., D. Oppenheim, and M. Klass, Development of the reproductive system of Caenorhabditis elegans. Dev Biol, 1976. 49(1): p. 200-19.
    81. Wathes, D.C., D.R.E. Abayasekara, and R.J. Aitken, Polyunsaturated fatty acids in male and female reproduction. Biology of Reproduction, 2007. 77(2): p. 190-201.
    82. Sturmey, R.G., et al., Role of Fatty Acids in Energy Provision During Oocyte Maturation and Early Embryo Development. Reproduction in Domestic Animals, 2009. 44: p. 50-58.
    83. Burrows, A.E., et al., The C. elegans Myt1 ortholog is required for the proper timing of oocyte maturation. Development, 2006. 133(4): p. 697-709.
    84. Miller, M.A., et al., An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans. Genes Dev, 2003. 17(2): p. 187-200.
    85. Genicot, G., et al., The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology, 2005. 63(4): p. 1181-1194.
    86. Carro, M., et al., Linoleic acid stimulates neutral lipid accumulation in lipid droplets of maturing bovine oocytes. Theriogenology, 2013. 79(4): p. 687-694.
    87. Ferreira, C.R., et al., Single embryo and oocyte lipid fingerprinting by mass spectrometry. Journal of Lipid Research, 2010. 51(5): p. 1218-1227.
    88. Chien, C.H., et al., Investigation of lipid homeostasis in living Drosophila by coherent anti-Stokes Raman scattering microscopy. Journal of Biomedical Optics 2012. 17(12): 126001.
    89. Yi, Y.H., et al., Lipid droplet pattern and nondroplet-like structure in two fat mutants of Caenorhabditis elegans revealed by coherent anti-Stokes Raman scattering microscopy. Journal of Biomedical Optics, 2014. 19(1): 011011.
    90. Velde, E.R.T. and P.L. Pearson, The variability of female reproductive ageing. Human Reproduction Update, 2002. 8(2): p. 141-154.
    91. Andux, S. and R.E. Ellis, Apoptosis Maintains Oocyte Quality in Aging Caenorhabditis elegans Females. Plos Genetics, 2008. 4(12): e1000295.
    92. Wolke, U., E.A. Jezuit, and J.R. Priess, Actin-dependent cytoplasmic streaming in C-elegans oogenesis. Development, 2007. 134(12): p. 2227-2236.
    93. Brisbin, S., et al., A Role for C. elegans Eph RTK Signaling in PTEN Regulation. Developmental Cell, 2009. 17(4): p. 459-469.
    94. Sharrock, W.J., et al., 2 Distinct Yolk Lipoprotein Complexes from Caenorhabditis-Elegans. Journal of Biological Chemistry, 1990. 265(24): p. 14422-14431.
    95. Spieth, J. and T. Blumenthal, The Caenorhabditis-Elegans Vitellogenin Gene Family Includes a Gene Encoding a Distantly Related Protein. Molecular and Cellular Biology, 1985. 5(10): p. 2495-2501.
    96. Kahn-Kirby, A.H., et al., Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell, 2004. 119(6): p. 889-900.
    97. Watts, J.L., et al., Deficiencies in C20 polyunsaturated fatty acids cause behavioral and developmental defects in Caenorhabditis elegans fat-3 mutants. Genetics, 2003. 163(2): p. 581-589.
    98. R Development Core Team, R: A language and environment for statistical computing. 2015, R Foundation for Statistical Computing: Vienna, Austria. p. Retrived from https://www.R-project.org/.
    99. Matorras, R., et al., Fatty acid composition of fertilization-failed human oocytes. Human Reproduction, 1998. 13(8): p. 2227-2230.
    100. van Montfoort, A.P.A., et al., Impact of maternal cholesterol metabolism on ovarian follicle development and fertility. Journal of Reproductive Immunology, 2014. 104: p. 32-36.
    101. Grondahl, M.L., et al., The dormant and the fully competent oocyte: comparing the transcriptome of human oocytes from primordial follicles and in metaphase II. Molecular Human Reproduction, 2013. 19(9): p. 600-617.
    102. Chen, W.W., et al., Specific polyunsaturated fatty acids modulate lipid delivery and oocyte development in C-elegans revealed by molecular-selective label-free imaging. Scientific Reports, 2016. 6: 32021.
    103. Adiga, U., et al., Automated Analysis and Classification of Infected Macrophages Using Bright-Field Amplitude Contrast Data. Journal of Biomolecular Screening, 2012. 17(3): p. 401-408.
    104. Le, T.T., et al., Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans. Journal of Lipid Research, 2010. 51(3): p. 672-677.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE