簡易檢索 / 詳目顯示

研究生: 賴至人
Lai, Chih-Jen
論文名稱: 系統性研究肝X受體訊息調控血管新生與CD44調控攝護腺癌中歐洲紫杉醇抗藥性促進之轉移所扮演的角色
Systematic Analysis of the Roles of Liver X Receptor Signaling in Angiogenesis Regulation and CD44 in Regulation of Docetaxel- Resistance-enhanced Prostate Cancer Metastasis
指導教授: 褚志斌
Chuu, Chih-Pin
汪宏達
Wang, Horng-Dar
口試委員: 侯自銓
Hour, Tzyh-Chyuan
陳雅雯
Chen, Ya-Wen
張壯榮
Chang, Chuang-Rung
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 115
中文關鍵詞: 血管新生癌症轉移肝X受體攝護腺癌歐洲紫杉醇
外文關鍵詞: Angiogenesis, Metastasis, Liver X receptor, Prostate cancer, Docetaxel
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血管新生以及癌細胞轉移在腫瘤進程上都是不可或缺的,所以我們利用系統性的array去研究血管新生以及癌症轉移。我們之前的實驗結果指出肝X受體(LXR)參與了攝護腺癌細胞的增生。我們檢視了LXR在臍靜脈內皮細胞中的效應,LXR激活物T0901317會抑制臍靜脈的血管生成、移動能力以及降低雞胚胎的血管新生能力。而過度表現LXR標靶基因ApoD則會抑制血管的生成。此外ApoD與SR-B1存在著交換作用的關係,降低SR-B1的表現挽回了T0901317所抑制的臍靜脈內皮細胞的移動能力。而過度表現ApoD則抑制磷酸化eNOS、AKT、IL、MMP、VEGF、MCP1。我們的研究顯示活化LXR即活化了ApoD表現,進而抑制AKT/eNOS這條訊號傳遞路徑,抑制了一氧化氮的生成也抑制了血管新生。此外我們探討產生歐洲紫杉醇抗性攝護腺癌細胞有較高移動性與侵襲性的原因。我們利用MWA比較了由PC-3與DU-145衍生而來、具有歐洲紫杉醇抗性的PC/DX25與DU/DX50細胞以及其原始的PC-3、DU-145細胞蛋白質表現量差異。過度表現差異很大的ApoD與抑制表現ABCA1對於細胞移動能力無顯著影響。我們用流式細胞儀觀察另一個有顯著差異的蛋白CD44。PC/DX25與DU/DX50細胞存在著較高的CD44+子群。PC/DX25細胞表現較多的CD44、YAP、CYR61、CTGF、p-ERK1/2以及Vimentin蛋白。我們抑制表現CD44或YAP可有效抑制PC/DX25與DU/DX50的細胞移動能力。抑制CD44蛋白質會導致YAP、CYR61、CTGF、p-ERK1/2、p-AKT以及Vimentin表現的抑制,但增加了p-YAP S127的表現量。我們認為CD44蛋白表現量的提升可藉由Hippo-YAP這條路徑來促進歐洲紫杉醇抗藥性的 CRPC的細胞移動能力,而CD44/YAP這條路徑或許也能作為治療歐洲紫杉醇抗藥性的 CRPC的潛在標的。


    Angiogenesis and metastasis are essential for cancer progression. We discovered that treatment with liver X receptors (LXRs) agonist T0901317 inhibited the tube formation and migration of HUVECs as well as reduced the angiogenesis during embryogenesis of chicken eggs in vivo by CAM assay. Overexpression of LXR target gene ApoD suppressed the tube formation of HUVECs. Immunoprecipitation indicated that ApoD interacts with SR-B1, while knockdown of SR-B1 blocked inhibitory effects of T0901317 on HUVEC migration. T0901317 treatment or overexpression of ApoD decreased proteins expression level of phospho-eNOS S1177, phospho-Akt T308, phospho-Akt S473, eNOS, mTOR, VEGF-A, VEGF-C, IL-8, MMP-8, MMP-9, and MCP1. Our study demonstrated that activation of LXR retards angiogenesis through induction of LXR target gene ApoD, which in turn inhibits PI3K-Akt-eNOS signaling, an essential pathway for angiogenesis and production of nitric oxide. Additionally, we examined the molecular mechanism why docetaxel-resistant PC/DX25 and DU/DX50 cells derived from parental PC-3 and DU-145 PCa cells, respectively exhibited higher migration and invasion ability than parental cells. PC/DX25 cells highly expressed CD44, ABCA1 but lower ApoD as determined by Micro-Western Array (MWA), a high-throughput antibody-based proteomic platform, and Western blotting. Flow cytometry analysis demonstrated that PC/DX25 cells and DU/DX50 cells contain higher CD44+ population. MWA and Western blotting assay indicated that protein expression of CD44, YAP, CYR61, CTGF, phospho-ERK1/2 (T202/Y204), ERK and vimentin was elevated in PC/DX25 cells. Knockdown of CD44 or YAP inhibited migration and invasion of PC/DX25 and DU/DX50 cells. In addition, knockdown of CD44 reduced the expression of YAP, CTGF and CYR61 but increased phosphorylation of S127 on YAP. These observations suggested that CD44 promotes cell mobility of docetaxel-resistant PCa cells via induction of Hippo-Yap signaling pathway. CD44/YAP pathway may be a potential therapeutic target for docetaxel-resistant PCa metastasis.

    Abstract……………………………………………………………….......................I 中文摘要…………………………………………………………………………...III 誌謝…………………………………………………………………………………IV Abbreviation…………………………………………………………………….....V Chapter 1 Introduction………………………………………………………….1 1.1 Angiogenesis in tumor progression.……………………………………………….1 1.2 Physiological angiogenesis versus tumor angiogenesis…………………………...2 1.3 Tube formation of tumor blood vessels……………………………………………4 1.4 Liver X receptors (LXRs)…………...……………………………………………..5 1.5 Introduction of ApoD……………………………………………………………...7 1.6 Role of ApoD in cancer……………………………………………………………8 1.7 Human umbilical vein endothelial cells…………………………………………. 9 1.8 Cell motility and tumor metastasis……………………………………………….10 1.9 Prostate cancer and the treatment………………………………………………...11 1.10 Chemotherapy drug docetaxel in PCa…………………………………………..12 1.11 Introduction of CD44…………………………………………………………...13 1.12 CD44 in prostate cancer…………………………………………………...…....15 1.13 Role of CD44 in migration and invasion…………………………………….....15 1.14 CD44-mediated signaling pathways………………………………………….…17 1.15 Hippo pathway in prostate cancer………………………………………………18 Chapter 2 Materials and Methods…………………………………………..20 2.1 Chemicals..……………………………………………………………………….20 2.2 Cell culture……………………………………………………………………….20 2.3 Tube formation …………………………………………………………………..21 2.4 Chorioallantoic Membranes (CAM) Assay………………………………………22 2.5 Transwell migration assay..………………………………………………………22 2.6 Transwell invasion assay ...……………………………………………..………..24 2.7 Wound healing assay……………………………………...……………………...24 2.8 Flow cytometry….……………………………………………………………….25 2.9 ApoD plasmid overexpression…………………………………………………...26 2.10 Knockdown of SR-B1, CD44 or YAP with small interfering RNA…………....26 2.11 Immunofluorescence……………………………………………………………27 2.12 Coimmunoprecipitation…………………………………………………………28 2.13 Angiogenesis protein array……………………………………………………...28 2.14 Micro western arrays (MWA)………………………………………………..…29 2.15 Western Blot analysis…………………………………………………………...29 2.16 Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)……………...30 2.17 Tumor sphere formation assay………………………………………………….33 2.18 Statistical analysis………………………………………………………………33 Chapter 3 Activation of liver X receptor suppresses angiogenesis via induction of ApoD.....................................................34 3.1 Introduction………………………………………………………………………34 3.2 Results……………………………………………………………………………35 3.3 Discussion………………………………………………………………………..38 Chapter 4 CD44 Promotes Migration and Invasion of Docetaxel-Resistant Prostate Cancer Cells Likely via Induction of Hippo-Yap Signaling………………………………………………....................44 4.1 Introduction………………………………………………………………………44 4.2 Results……………………………………………………………………………45 43. Discussion………………………………………………………………………..50 Chapter 5 Elevation of ApoD may retard migration and invasion ability in prostate cancer cells …………………………….………................57 5.1 Introduction………………………………………………………………………57 5.2 Results……………………………………………………………………………57 5.3 Discussion………………………………………………………………………..58 Chapter 6 Conclusion and future study…..….…...……………..................60 Chapter 7 Figures…………………………………………………………...…...62 Figure 1.1 Angiogenic cascade. ………………………………………..…………….62 Figure 1.2 LXRs are regulators of central nervous system, glucose homeostasis and cholesterol homeostasis. ……….…………………………………………………….63 Figure 1.3 Metastatic cascade……...………………………………………………...64 Figure 1.4 Cancer can spread to almost entire body…………...…………………….65 Figure 1.5 CD44, a transmembrane glycoprotein receptor. …..……...…….………..66 Figure 1.6 CD44-regulated downstream signaling pathways.….…………………....67 Figure 1.7 Simplified schematic illustration of the Hippo pathway.……………........68 Figure 3.2.1 Stimulatory activity of T0901317 on gene and protein expression of LXR target genes in HUVECs……………………………………………………………..69 Figure 3.2.2 Treatment with LXR agonist T0901317 suppresses angiogenesis of HUVECs in vitro as determined by tube formation assay…………………………...70 Figure 3.2.3 T0901317 suppresses migration of HUVECs and inhibited angiogenesis in vivo as determined by CAM………………………………...…………………….72 Figure 3.2.4 Overexpression of ApoD suppresses tube formation of HUVECs……..74 Figure 3.2.5 Interaction of ApoD and SR-B1 is involved in migration inhibition of HUVECs caused by T0901317 treatment……………………………………………75 Figure 3.2.6 T0901317 treatment affects signaling proteins regulating angiogenesis in HUVECs……………………………………………………………………………...76 Figure 3.2.7 ApoD overexpression affects signaling proteins regulating angiogenesis………………………………………………………………………….77 Figure 3.3.1 Signaling pathway affected by LXR agonist T0901317………………..78 Figure 3.3.2 HUVEC cell lysates for angiogenesis array assay……………………...79 Figure 3.3.3 Treatment with T0901317 suppressed protein levels of MMP-8, MMP-9, VEGFA, and VEGFC………………………………………………………………...80 Figure 4.2.1 Transwell assay and wound healing assay revealed that docetaxel-resistant PCa cells exhibited higher migration and invasion ability as compared to parental PCa cells………………………………………………………82 Figure 4.2.2 Profile of proteins regulating cell migration and invasion including LXR target genes in PC-3 vs. PC/DX25 cells as determined by Micro-Western Array, western blotting, and real-time quantitative PCR……………………………………84 Figure 4.2.3 Knockdown of CD44 suppresses cell mobility of docetaxel-resistant PCa cells but alteration of LXR target genes did not affect cell mobility significantly of docetaxel-resistant PCa cells…………………………………………………………85 Figure 4.24 FACS analysis of CD44 protein expression in PC-3, PC/DX25, DU-145, DU/DX50 cells……………………………………………………………………….86 Figure 4.2.5 Profile of proteins and mRNA regulating cell migration and invasion in PC-3 vs. PC/DX25 cells as determined by Western blotting and real-time quantitative PCR.………………………………………………………………………………….87 Figure 4.2.6 Knockdown of CD44 or YAP protein suppresses cell mobility of docetaxel-resistant PCa cells………………………………………………………....88 Figure 4.2.7 Knockdown of CD44 protein in docetaxel-resistant PCa cells inhibits Hippo-YAP signaling pathway……………………………………………………….90 Figure 4.3.1 FACS analysis of ALDH intensity in PC-3, PC/DX25, DU-145, DU/DX50 cells……………………………………………………………………….91 Figure 4.3.2 Tumor sphere formation of PC-3 and PC/DX25 cells………………….92 Figure 4.3.3 Viability of knockdown of CD44 in PC/DX25 cells………………...…93 Figure 4.3.4 Putative cellular mechanism how CD44 proteins promotes migration and invasion of docetaxel-resistance PCa cells…………………………………………...94 Figure 5.1 ApoD may play a role of tumor suppressor from Disease summary…......95 Figure 5.2.1 ApoD profile of clinical data bases, Oncomine and Survexpress………96 Figure 5.2.2 Overexpression of ApoD suppress cell migration and invasion of C4-2B and PC-3 cells………………………………………………………………………...97 Figure 5.2.3 Profile of proteins regulating cell migration and invasion in C4-2B control mock vs. C4-2B overexpressed-ApoD cells as determined by Micro-Western Array (MWA)………………………………………………………………………...98 Chapter 8 References………………………………………………………….100

    1. Bergers, G., and Benjamin, L. E. (2003) Tumorigenesis and the angiogenic switch. Nature reviews. Cancer 3, 401-410
    2. Black, W. C., and Welch, H. G. (1993) Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. The New England journal of medicine 328, 1237-1243
    3. Kerbel, R., and Folkman, J. (2002) Clinical translation of angiogenesis inhibitors. Nature reviews. Cancer 2, 727-739
    4. O'Reilly, M. S. (1997) Angiostatin: an endogenous inhibitor of angiogenesis and of tumor growth. Exs 79, 273-294
    5. O'Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277-285
    6. Joseph, I. B., Vukanovic, J., and Isaacs, J. T. (1996) Antiangiogenic treatment with linomide as chemoprevention for prostate, seminal vesicle, and breast carcinogenesis in rodents. Cancer research 56, 3404-3408
    7. Subbaramaiah, K., and Dannenberg, A. J. (2003) Cyclooxygenase 2: a molecular target for cancer prevention and treatment. Trends in pharmacological sciences 24, 96-102
    8. Iniguez, M. A., Rodriguez, A., Volpert, O. V., Fresno, M., and Redondo, J. M. (2003) Cyclooxygenase-2: a therapeutic target in angiogenesis. Trends in molecular medicine 9, 73-78
    9. Lieberman, R. (2002) Chemoprevention of prostate cancer: current status and future directions. Cancer metastasis reviews 21, 297-309
    10. Hussain, T., Gupta, S., and Mukhtar, H. (2003) Cyclooxygenase-2 and prostate carcinogenesis. Cancer letters 191, 125-135
    11. Chen, Y. J., Wang, L. S., Wang, P. H., Lai, C. R., Yen, M. S., Ng, H. T., and Yuan, C. C. (2003) High cyclooxygenase-2 expression in cervical adenocarcinomas. Gynecologic oncology 88, 379-385
    12. Carmeliet, P. (2000) Mechanisms of angiogenesis and arteriogenesis. Nature medicine 6, 389-395
    13. Hanahan, D., and Folkman, J. (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364
    14. Dvorak, H. F. (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England journal of medicine 315, 1650-1659
    15. Benjamin, L. E., Golijanin, D., Itin, A., Pode, D., and Keshet, E. (1999) Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. The Journal of clinical investigation 103, 159-165
    16. Morikawa, S., Baluk, P., Kaidoh, T., Haskell, A., Jain, R. K., and McDonald, D. M. (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. The American journal of pathology 160, 985-1000
    17. Folberg, R., Hendrix, M. J., and Maniotis, A. J. (2000) Vasculogenic mimicry and tumor angiogenesis. The American journal of pathology 156, 361-381
    18. McDonald, D. M., Munn, L., and Jain, R. K. (2000) Vasculogenic mimicry: how convincing, how novel, and how significant? The American journal of pathology 156, 383-388
    19. Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., Chadburn, A., Heissig, B., Marks, W., Witte, L., Wu, Y., Hicklin, D., Zhu, Z., Hackett, N. R., Crystal, R. G., Moore, M. A., Hajjar, K. A., Manova, K., Benezra, R., and Rafii, S. (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nature medicine 7, 1194-1201
    20. Rafii, S., Heissig, B., and Hattori, K. (2002) Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene therapy 9, 631-641
    21. Hattori, K., Dias, S., Heissig, B., Hackett, N. R., Lyden, D., Tateno, M., Hicklin, D. J., Zhu, Z., Witte, L., Crystal, R. G., Moore, M. A., and Rafii, S. (2001) Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. The Journal of experimental medicine 193, 1005-1014
    22. Hattori, K., Heissig, B., Wu, Y., Dias, S., Tejada, R., Ferris, B., Hicklin, D. J., Zhu, Z., Bohlen, P., Witte, L., Hendrikx, J., Hackett, N. R., Crystal, R. G., Moore, M. A., Werb, Z., Lyden, D., and Rafii, S. (2002) Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nature medicine 8, 841-849
    23. Stone, J., Itin, A., Alon, T., Pe'er, J., Gnessin, H., Chan-Ling, T., and Keshet, E. (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. The Journal of neuroscience : the official journal of the Society for Neuroscience 15, 4738-4747
    24. Hirschi, K. K., and D'Amore, P. A. (1996) Pericytes in the microvasculature. Cardiovascular research 32, 687-698
    25. Benjamin, L. E., Hemo, I., and Keshet, E. (1998) A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development 125, 1591-1598
    26. Benjamin, L. E., and Keshet, E. (1997) Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proceedings of the National Academy of Sciences of the United States of America 94, 8761-8766
    27. Chuu, C. P., Kokontis, J. M., Hiipakka, R. A., and Liao, S. (2007) Modulation of liver X receptor signaling as novel therapy for prostate cancer. Journal of biomedical science 14, 543-553
    28. Seol, W., Choi, H. S., and Moore, D. D. (1995) Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Molecular endocrinology 9, 72-85
    29. Zelcer, N., and Tontonoz, P. (2006) Liver X receptors as integrators of metabolic and inflammatory signaling. The Journal of clinical investigation 116, 607-614
    30. Janowski, B. A., Willy, P. J., Devi, T. R., Falck, J. R., and Mangelsdorf, D. J. (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXR alpha. Nature 383, 728-731
    31. Willy, P. J., Umesono, K., Ong, E. S., Evans, R. M., Heyman, R. A., and Mangelsdorf, D. J. (1995) LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes & development 9, 1033-1045
    32. Song, C., Kokontis, J. M., Hiipakka, R. A., and Liao, S. (1994) Ubiquitous receptor: a receptor that modulates gene activation by retinoic acid and thyroid hormone receptors. Proceedings of the National Academy of Sciences of the United States of America 91, 10809-10813
    33. Schultz, J. R., Tu, H., Luk, A., Repa, J. J., Medina, J. C., Li, L., Schwendner, S., Wang, S., Thoolen, M., Mangelsdorf, D. J., Lustig, K. D., and Shan, B. (2000) Role of LXRs in control of lipogenesis. Genes & development 14, 2831-2838
    34. Collins, J. L., Fivush, A. M., Watson, M. A., Galardi, C. M., Lewis, M. C., Moore, L. B., Parks, D. J., Wilson, J. G., Tippin, T. K., Binz, J. G., Plunket, K. D., Morgan, D. G., Beaudet, E. J., Whitney, K. D., Kliewer, S. A., and Willson, T. M. (2002) Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. Journal of medicinal chemistry 45, 1963-1966
    35. Edwards, P. A., Kennedy, M. A., and Mak, P. A. (2002) LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis. Vascular pharmacology 38, 249-256
    36. Alberti, S., Schuster, G., Parini, P., Feltkamp, D., Diczfalusy, U., Rudling, M., Angelin, B., Bjorkhem, I., Pettersson, S., and Gustafsson, J. A. (2001) Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRbeta-deficient mice. The Journal of clinical investigation 107, 565-573
    37. Peet, D. J., Turley, S. D., Ma, W., Janowski, B. A., Lobaccaro, J. M., Hammer, R. E., and Mangelsdorf, D. J. (1998) Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXR alpha. Cell 93, 693-704
    38. Joseph, S. B., McKilligin, E., Pei, L., Watson, M. A., Collins, A. R., Laffitte, B. A., Chen, M., Noh, G., Goodman, J., Hagger, G. N., Tran, J., Tippin, T. K., Wang, X., Lusis, A. J., Hsueh, W. A., Law, R. E., Collins, J. L., Willson, T. M., and Tontonoz, P. (2002) Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proceedings of the National Academy of Sciences of the United States of America 99, 7604-7609
    39. Blaschke, F., Leppanen, O., Takata, Y., Caglayan, E., Liu, J., Fishbein, M. C., Kappert, K., Nakayama, K. I., Collins, A. R., Fleck, E., Hsueh, W. A., Law, R. E., and Bruemmer, D. (2004) Liver X receptor agonists suppress vascular smooth muscle cell proliferation and inhibit neointima formation in balloon-injured rat carotid arteries. Circulation research 95, e110-123
    40. Laffitte, B. A., Repa, J. J., Joseph, S. B., Wilpitz, D. C., Kast, H. R., Mangelsdorf, D. J., and Tontonoz, P. (2001) LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proceedings of the National Academy of Sciences of the United States of America 98, 507-512
    41. Efanov, A. M., Sewing, S., Bokvist, K., and Gromada, J. (2004) Liver X receptor activation stimulates insulin secretion via modulation of glucose and lipid metabolism in pancreatic beta-cells. Diabetes 53 Suppl 3, S75-78
    42. Cao, G., Liang, Y., Broderick, C. L., Oldham, B. A., Beyer, T. P., Schmidt, R. J., Zhang, Y., Stayrook, K. R., Suen, C., Otto, K. A., Miller, A. R., Dai, J., Foxworthy, P., Gao, H., Ryan, T. P., Jiang, X. C., Burris, T. P., Eacho, P. I., and Etgen, G. J. (2003) Antidiabetic action of a liver x receptor agonist mediated by inhibition of hepatic gluconeogenesis. The Journal of biological chemistry 278, 1131-1136
    43. Wang, L., Schuster, G. U., Hultenby, K., Zhang, Q., Andersson, S., and Gustafsson, J. A. (2002) Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proceedings of the National Academy of Sciences of the United States of America 99, 13878-13883
    44. Andersson, S., Gustafsson, N., Warner, M., and Gustafsson, J. A. (2005) Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proceedings of the National Academy of Sciences of the United States of America 102, 3857-3862
    45. Koldamova, R. P., Lefterov, I. M., Staufenbiel, M., Wolfe, D., Huang, S., Glorioso, J. C., Walter, M., Roth, M. G., and Lazo, J. S. (2005) The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer's disease. The Journal of biological chemistry 280, 4079-4088
    46. Hu, C. Y., Ong, W. Y., Sundaram, R. K., Chan, C., and Patel, S. C. (2001) Immunocytochemical localization of apolipoprotein D in oligodendrocyte precursor-like cells, perivascular cells, and pericytes in the human cerebral cortex. Journal of neurocytology 30, 209-218
    47. Perdomo, G., and Henry Dong, H. (2009) Apolipoprotein D in lipid metabolism and its functional implication in atherosclerosis and aging. Aging 1, 17-27
    48. Muffat, J., and Walker, D. W. (2010) Apolipoprotein D: an overview of its role in aging and age-related diseases. Cell cycle 9, 269-273
    49. Doane, A. S., Danso, M., Lal, P., Donaton, M., Zhang, L., Hudis, C., and Gerald, W. L. (2006) An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 25, 3994-4008
    50. Jin, D., El-Tanani, M., and Campbell, F. C. (2006) Identification of apolipoprotein D as a novel inhibitor of osteopontin-induced neoplastic transformation. International journal of oncology 29, 1591-1599
    51. Sarjeant, J. M., Lawrie, A., Kinnear, C., Yablonsky, S., Leung, W., Massaeli, H., Prichett, W., Veinot, J. P., Rassart, E., and Rabinovitch, M. (2003) Apolipoprotein D inhibits platelet-derived growth factor-BB-induced vascular smooth muscle cell proliferated by preventing translocation of phosphorylated extracellular signal regulated kinase 1/2 to the nucleus. Arteriosclerosis, thrombosis, and vascular biology 23, 2172-2177
    52. Sasaki, Y., Negishi, H., Koyama, R., Anbo, N., Ohori, K., Idogawa, M., Mita, H., Toyota, M., Imai, K., Shinomura, Y., and Tokino, T. (2009) p53 family members regulate the expression of the apolipoprotein D gene. The Journal of biological chemistry 284, 872-883
    53. Diez-Itza, I., Vizoso, F., Merino, A. M., Sanchez, L. M., Tolivia, J., Fernandez, J., Ruibal, A., and Lopez-Otin, C. (1994) Expression and prognostic significance of apolipoprotein D in breast cancer. The American journal of pathology 144, 310-320
    54. Todd, A. S. (1959) The histological localisation of fibrinolysin activator. The Journal of pathology and bacteriology 78, 281-283
    55. Spaet, T. H., and Erichson, R. B. (1966) The vascular wall in the pathogenesis of thrombosis. Thrombosis et diathesis haemorrhagica. Supplementum 21, 67-86
    56. Baumgartner, H. R., Tranzer, J. P., and Studer, A. (1967) An electron microscopic study of platelet thrombus formation in the rabbit with particular regard to 5-hydroxytryptamine release. Thrombosis et diathesis haemorrhagica 18, 592-604
    57. Tranzer, J. P., and Baumgartner, H. R. (1967) Filling gaps in the vascular endothelium with blood platelets. Nature 216, 1126-1128
    58. Warren, B. A., and de Bono, A. H. (1970) The ultrastructure of initial stages of platelet aggregation and adhesion to damaged vessel walls in vivo. British journal of experimental pathology 51, 415-422
    59. Zeldis, S. M., Nemerson, Y., Pitlick, F. A., and Lentz, T. L. (1972) Tissue factor (thromboplastin): localization to plasma membranes by peroxidase-conjugated antibodies. Science 175, 766-768
    60. Stemerman, M. B., and Spaet, T. H. (1972) The subendothelium and thrombogenesis. Bulletin of the New York Academy of Medicine 48, 289-301
    61. Becker, C. G., and Nachman, R. L. (1973) Contractile proteins of endothelial cells, platelets and smooth muscle. The American journal of pathology 71, 1-22
    62. Gore, I., Takada, M., and Austin, J. (1970) Ultrastructural basis of experimental thrombocytopenic purpura. Archives of pathology 90, 197-205
    63. Roy, A. J., and Djerassi, I. (1972) Effects of platelet transfusions: plug formation and maintenance of vascular integrity. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine 139, 137-142
    64. Strum, J. M., and Junod, A. F. (1972) Radioautographic demonstration of 5-hydroxytryptamine- 3 H uptake by pulmonary endothelial cells. The Journal of cell biology 54, 456-467
    65. Verhamme, P., and Hoylaerts, M. F. (2006) The pivotal role of the endothelium in haemostasis and thrombosis. Acta Clin Belg 61, 213-219
    66. Park, H. J., Zhang, Y., Georgescu, S. P., Johnson, K. L., Kong, D., and Galper, J. B. (2006) Human umbilical vein endothelial cells and human dermal microvascular endothelial cells offer new insights into the relationship between lipid metabolism and angiogenesis. Stem cell reviews 2, 93-102
    67. Lambert, A. W., Pattabiraman, D. R., and Weinberg, R. A. (2017) Emerging Biological Principles of Metastasis. Cell 168, 670-691
    68. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674
    69. Pickup, M. W., Mouw, J. K., and Weaver, V. M. (2014) The extracellular matrix modulates the hallmarks of cancer. EMBO reports 15, 1243-1253
    70. Saxena, M., and Christofori, G. (2013) Rebuilding cancer metastasis in the mouse. Molecular oncology 7, 283-296
    71. Nguyen, D. X., Bos, P. D., and Massague, J. (2009) Metastasis: from dissemination to organ-specific colonization. Nature reviews. Cancer 9, 274-284
    72. Urosevic, J., Garcia-Albeniz, X., Planet, E., Real, S., Cespedes, M. V., Guiu, M., Fernandez, E., Bellmunt, A., Gawrzak, S., Pavlovic, M., Mangues, R., Dolado, I., Barriga, F. M., Nadal, C., Kemeny, N., Batlle, E., Nebreda, A. R., and Gomis, R. R. (2014) Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH. Nature cell biology 16, 685-694
    73. Obenauf, A. C., and Massague, J. (2015) Surviving at a Distance: Organ-Specific Metastasis. Trends in cancer 1, 76-91
    74. Hellerstedt, B. A., and Pienta, K. J. (2002) The current state of hormonal therapy for prostate cancer. CA: a cancer journal for clinicians 52, 154-179
    75. Chuu, C. P., Kokontis, J. M., Hiipakka, R. A., Fukuchi, J., Lin, H. P., Lin, C. Y., Huo, C., and Su, L. C. (2011) Androgens as therapy for androgen receptor-positive castration-resistant prostate cancer. Journal of biomedical science 18, 63
    76. Scher, H. I., and Sawyers, C. L. (2005) Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23, 8253-8261
    77. Lam, J. S., Leppert, J. T., Vemulapalli, S. N., Shvarts, O., and Belldegrun, A. S. (2006) Secondary hormonal therapy for advanced prostate cancer. The Journal of urology 175, 27-34
    78. Tannock, I. F., de Wit, R., Berry, W. R., Horti, J., Pluzanska, A., Chi, K. N., Oudard, S., Theodore, C., James, N. D., Turesson, I., Rosenthal, M. A., Eisenberger, M. A., and Investigators, T. A. X. (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351, 1502-1512
    79. de Bono, J. S., Oudard, S., Ozguroglu, M., Hansen, S., Machiels, J. P., Kocak, I., Gravis, G., Bodrogi, I., Mackenzie, M. J., Shen, L., Roessner, M., Gupta, S., Sartor, A. O., and Investigators, T. (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376, 1147-1154
    80. Tanimoto, T., Hori, A., and Kami, M. (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England journal of medicine 363, 1966; author reply 1967-1968
    81. de Bono, J. S., Logothetis, C. J., Molina, A., Fizazi, K., North, S., Chu, L., Chi, K. N., Jones, R. J., Goodman, O. B., Jr., Saad, F., Staffurth, J. N., Mainwaring, P., Harland, S., Flaig, T. W., Hutson, T. E., Cheng, T., Patterson, H., Hainsworth, J. D., Ryan, C. J., Sternberg, C. N., Ellard, S. L., Flechon, A., Saleh, M., Scholz, M., Efstathiou, E., Zivi, A., Bianchini, D., Loriot, Y., Chieffo, N., Kheoh, T., Haqq, C. M., Scher, H. I., and Investigators, C.-A.-. (2011) Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 364, 1995-2005
    82. Gilligan, T., and Kantoff, P. W. (2002) Chemotherapy for prostate cancer. Urology 60, 94-100; discussion 100
    83. Petrylak, D. P., Tangen, C. M., Hussain, M. H., Lara, P. N., Jr., Jones, J. A., Taplin, M. E., Burch, P. A., Berry, D., Moinpour, C., Kohli, M., Benson, M. C., Small, E. J., Raghavan, D., and Crawford, E. D. (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351, 1513-1520
    84. Gronthos, S., Franklin, D. M., Leddy, H. A., Robey, P. G., Storms, R. W., and Gimble, J. M. (2001) Surface protein characterization of human adipose tissue-derived stromal cells. Journal of cellular physiology 189, 54-63
    85. Yin, T., Wang, G., He, S., Liu, Q., Sun, J., and Wang, Y. (2016) Human cancer cells with stem cell-like phenotype exhibit enhanced sensitivity to the cytotoxicity of IL-2 and IL-15 activated natural killer cells. Cellular immunology 300, 41-45
    86. Chen, C., Zhao, S., Karnad, A., and Freeman, J. W. (2018) The biology and role of CD44 in cancer progression: therapeutic implications. Journal of hematology & oncology 11, 64
    87. Ponta, H., Sherman, L., and Herrlich, P. A. (2003) CD44: from adhesion molecules to signalling regulators. Nature reviews. Molecular cell biology 4, 33-45
    88. Basakran, N. S. (2015) CD44 as a potential diagnostic tumor marker. Saudi medical journal 36, 273-279
    89. Underhill, C. (1992) CD44: the hyaluronan receptor. Journal of cell science 103 ( Pt 2), 293-298
    90. Williams, K., Motiani, K., Giridhar, P. V., and Kasper, S. (2013) CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic niches. Experimental biology and medicine 238, 324-338
    91. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., and Weinberg, R. A. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715
    92. Zhao, S., Chen, C., Chang, K., Karnad, A., Jagirdar, J., Kumar, A. P., and Freeman, J. W. (2016) CD44 Expression Level and Isoform Contributes to Pancreatic Cancer Cell Plasticity, Invasiveness, and Response to Therapy. Clinical cancer research : an official journal of the American Association for Cancer Research 22, 5592-5604
    93. Senbanjo, L. T., and Chellaiah, M. A. (2017) CD44: A Multifunctional Cell Surface Adhesion Receptor Is a Regulator of Progression and Metastasis of Cancer Cells. Frontiers in cell and developmental biology 5, 18
    94. Ni, J., Cozzi, P. J., Hao, J. L., Beretov, J., Chang, L., Duan, W., Shigdar, S., Delprado, W. J., Graham, P. H., Bucci, J., Kearsley, J. H., and Li, Y. (2014) CD44 variant 6 is associated with prostate cancer metastasis and chemo-/radioresistance. The Prostate 74, 602-617
    95. Weber, G. F., Ashkar, S., Glimcher, M. J., and Cantor, H. (1996) Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science 271, 509-512
    96. Yu, Q., and Stamenkovic, I. (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes & development 13, 35-48
    97. Gupta, A., Cao, W., Sadashivaiah, K., Chen, W., Schneider, A., and Chellaiah, M. A. (2013) Promising noninvasive cellular phenotype in prostate cancer cells knockdown of matrix metalloproteinase 9. TheScientificWorldJournal 2013, 493689
    98. Hernandez, J. R., Kim, J. J., Verdone, J. E., Liu, X., Torga, G., Pienta, K. J., and Mooney, S. M. (2015) Alternative CD44 splicing identifies epithelial prostate cancer cells from the mesenchymal counterparts. Medical oncology 32, 159
    99. Gunthert, U., Hofmann, M., Rudy, W., Reber, S., Zoller, M., Haussmann, I., Matzku, S., Wenzel, A., Ponta, H., and Herrlich, P. (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65, 13-24
    100. Franzmann, E. J., Weed, D. T., Civantos, F. J., Goodwin, W. J., and Bourguignon, L. Y. (2001) A novel CD44 v3 isoform is involved in head and neck squamous cell carcinoma progression. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery 124, 426-432
    101. Salem, O., and Hansen, C. G. (2019) The Hippo Pathway in Prostate Cancer. Cells 8
    102. Meng, Z., Moroishi, T., Mottier-Pavie, V., Plouffe, S. W., Hansen, C. G., Hong, A. W., Park, H. W., Mo, J. S., Lu, W., Lu, S., Flores, F., Yu, F. X., Halder, G., and Guan, K. L. (2015) MAP4K family kinases act in parallel to MST1/2 to activate LATS1/2 in the Hippo pathway. Nature communications 6, 8357
    103. Chan, S. W., Lim, C. J., Chong, Y. F., Pobbati, A. V., Huang, C., and Hong, W. (2011) Hippo pathway-independent restriction of TAZ and YAP by angiomotin. The Journal of biological chemistry 286, 7018-7026
    104. Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J. D., Wang, C. Y., Chinnaiyan, A. M., Lai, Z. C., and Guan, K. L. (2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22, 1962-1971
    105. Mason, D. E., Collins, J. M., Dawahare, J. H., Nguyen, T. D., Lin, Y., Voytik-Harbin, S. L., Zorlutuna, P., Yoder, M. C., and Boerckel, J. D. (2019) YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility. The Journal of cell biology 218, 1369-1389
    106. Collak, F. K., Demir, U., Ozkanli, S., Kurum, E., and Zerk, P. E. (2017) Increased expression of YAP1 in prostate cancer correlates with extraprostatic extension. Cancer biology & medicine 14, 405-413
    107. Liu, C. Y., Yu, T., Huang, Y., Cui, L., and Hong, W. (2017) ETS (E26 transformation-specific) up-regulation of the transcriptional co-activator TAZ promotes cell migration and metastasis in prostate cancer. The Journal of biological chemistry 292, 9420-9430
    108. Chuu, C. P., Hiipakka, R. A., Kokontis, J. M., Fukuchi, J., Chen, R. Y., and Liao, S. (2006) Inhibition of tumor growth and progression of LNCaP prostate cancer cells in athymic mice by androgen and liver X receptor agonist. Cancer research 66, 6482-6486
    109. Chuu, C. P., and Lin, H. P. (2010) Antiproliferative effect of LXR agonists T0901317 and 22(R)-hydroxycholesterol on multiple human cancer cell lines. Anticancer research 30, 3643-3648
    110. Fukuchi, J., Hiipakka, R. A., Kokontis, J. M., Hsu, S., Ko, A. L., Fitzgerald, M. L., and Liao, S. (2004) Androgenic suppression of ATP-binding cassette transporter A1 expression in LNCaP human prostate cancer cells. Cancer research 64, 7682-7685
    111. Birbrair, A., Zhang, T., Wang, Z. M., Messi, M. L., Olson, J. D., Mintz, A., and Delbono, O. (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. American journal of physiology. Cell physiology 307, C25-38
    112. Folkman, J. (1971) Tumor angiogenesis: therapeutic implications. The New England journal of medicine 285, 1182-1186
    113. Noghero, A., Perino, A., Seano, G., Saglio, E., Lo Sasso, G., Veglio, F., Primo, L., Hirsch, E., Bussolino, F., and Morello, F. (2012) Liver X receptor activation reduces angiogenesis by impairing lipid raft localization and signaling of vascular endothelial growth factor receptor-2. Arterioscler Thromb Vasc Biol 32, 2280-2288
    114. Fang, L., Choi, S. H., Baek, J. S., Liu, C., Almazan, F., Ulrich, F., Wiesner, P., Taleb, A., Deer, E., Pattison, J., Torres-Vazquez, J., Li, A. C., and Miller, Y. I. (2013) Control of angiogenesis by AIBP-mediated cholesterol efflux. Nature 498, 118-122
    115. Braesch-Andersen, S., Beckman, L., Paulie, S., and Kumagai-Braesch, M. (2014) ApoD mediates binding of HDL to LDL and to growing T24 carcinoma. PLoS One 9, e115180
    116. Wu, B. J., Shrestha, S., Ong, K. L., Johns, D., Dunn, L. L., Hou, L., Barter, P. J., and Rye, K. A. (2015) Increasing HDL levels by inhibiting cholesteryl ester transfer protein activity in rabbits with hindlimb ischemia is associated with increased angiogenesis. Int J Cardiol 199, 204-212
    117. Hong, C., Shen, C., Ding, H., Huang, S., Mu, Y., Su, H., Wei, W., Ma, J., and Zheng, F. (2015) An involvement of SR-B1 mediated p38 MAPK signaling pathway in serum amyloid A-induced angiogenesis in rheumatoid arthritis. Mol Immunol 66, 340-345
    118. Lu, C. W., Lo, Y. H., Chen, C. H., Lin, C. Y., Tsai, C. H., Chen, P. J., Yang, Y. F., Wang, C. H., Tan, C. H., Hou, M. F., and Yuan, S. F. (2017) VLDL and LDL, but not HDL, promote breast cancer cell proliferation, metastasis and angiogenesis. Cancer Lett 388, 130-138
    119. Maffucci, T., Piccolo, E., Cumashi, A., Iezzi, M., Riley, A. M., Saiardi, A., Godage, H. Y., Rossi, C., Broggini, M., Iacobelli, S., Potter, B. V., Innocenti, P., and Falasca, M. (2005) Inhibition of the phosphatidylinositol 3-kinase/Akt pathway by inositol pentakisphosphate results in antiangiogenic and antitumor effects. Cancer Res 65, 8339-8349
    120. Dai, J., Peng, L., Fan, K., Wang, H., Wei, R., Ji, G., Cai, J., Lu, B., Li, B., Zhang, D., Kang, Y., Tan, M., Qian, W., and Guo, Y. (2009) Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene 28, 3412-3422
    121. Papapetropoulos, A., Garcia-Cardena, G., Madri, J. A., and Sessa, W. C. (1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100, 3131-3139
    122. Kroll, J., and Waltenberger, J. (1998) VEGF-A induces expression of eNOS and iNOS in endothelial cells via VEGF receptor-2 (KDR). Biochem Biophys Res Commun 252, 743-746
    123. Bouloumie, A., Schini-Kerth, V. B., and Busse, R. (1999) Vascular endothelial growth factor up-regulates nitric oxide synthase expression in endothelial cells. Cardiovasc Res 41, 773-780
    124. Karkkainen, M. J., and Petrova, T. V. (2000) Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 19, 5598-5605
    125. Pang, X., Yi, Z., Zhang, J., Lu, B., Sung, B., Qu, W., Aggarwal, B. B., and Liu, M. (2010) Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway. Cancer Res 70, 1951-1959
    126. Ouchi, N., Kobayashi, H., Kihara, S., Kumada, M., Sato, K., Inoue, T., Funahashi, T., and Walsh, K. (2004) Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J Biol Chem 279, 1304-1309
    127. Howe, G. A., and Addison, C. L. (2012) RhoB controls endothelial cell morphogenesis in part via negative regulation of RhoA. Vasc Cell 4, 1
    128. Santhekadur, P. K., Gredler, R., Chen, D., Siddiq, A., Shen, X. N., Das, S. K., Emdad, L., Fisher, P. B., and Sarkar, D. (2012) Late SV40 factor (LSF) enhances angiogenesis by transcriptionally up-regulating matrix metalloproteinase-9 (MMP-9). J Biol Chem 287, 3425-3432
    129. Li, A., Dubey, S., Varney, M. L., Dave, B. J., and Singh, R. K. (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170, 3369-3376
    130. Niu, J., Azfer, A., Zhelyabovska, O., Fatma, S., and Kolattukudy, P. E. (2008) Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem 283, 14542-14551
    131. Ploussard, G., Terry, S., Maille, P., Allory, Y., Sirab, N., Kheuang, L., Soyeux, P., Nicolaiew, N., Coppolani, E., Paule, B., Salomon, L., Culine, S., Buttyan, R., Vacherot, F., and de la Taille, A. (2010) Class III beta-tubulin expression predicts prostate tumor aggressiveness and patient response to docetaxel-based chemotherapy. Cancer Res 70, 9253-9264
    132. Hour, T. C., Chung, S. D., Kang, W. Y., Lin, Y. C., Chuang, S. J., Huang, A. M., Wu, W. J., Huang, S. P., Huang, C. Y., and Pu, Y. S. (2015) EGFR mediates docetaxel resistance in human castration-resistant prostate cancer through the Akt-dependent expression of ABCB1 (MDR1). Arch Toxicol 89, 591-605
    133. Antonarakis, E. S., Keizman, D., Zhang, Z., Gurel, B., Lotan, T. L., Hicks, J. L., Fedor, H. L., Carducci, M. A., De Marzo, A. M., and Eisenberger, M. A. (2012) An immunohistochemical signature comprising PTEN, MYC, and Ki67 predicts progression in prostate cancer patients receiving adjuvant docetaxel after prostatectomy. Cancer 118, 6063-6071
    134. Hao, J., Madigan, M. C., Khatri, A., Power, C. A., Hung, T. T., Beretov, J., Chang, L., Xiao, W., Cozzi, P. J., Graham, P. H., Kearsley, J. H., and Li, Y. (2012) In vitro and in vivo prostate cancer metastasis and chemoresistance can be modulated by expression of either CD44 or CD147. PLoS One 7, e40716
    135. Naor, D., Wallach-Dayan, S. B., Zahalka, M. A., and Sionov, R. V. (2008) Involvement of CD44, a molecule with a thousand faces, in cancer dissemination. Seminars in cancer biology 18, 260-267
    136. Bourguignon, L. Y., Peyrollier, K., Xia, W., and Gilad, E. (2008) Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells. J Biol Chem 283, 17635-17651
    137. Singh, N., Liu, G., and Chakrabarty, S. (2013) Isolation and characterization of calcium sensing receptor null cells: a highly malignant and drug resistant phenotype of colon cancer. Int J Cancer 132, 1996-2005
    138. Lu, S., and Labhasetwar, V. (2013) Drug Resistant Breast Cancer Cell Line Displays Cancer Stem Cell Phenotype and Responds Sensitively to Epigenetic Drug SAHA. Drug Deliv Transl Res 3, 183-194
    139. Brown, R. L., Reinke, L. M., Damerow, M. S., Perez, D., Chodosh, L. A., Yang, J., and Cheng, C. (2011) CD44 splice isoform switching in human and mouse epithelium is essential for epithelial-mesenchymal transition and breast cancer progression. J Clin Invest 121, 1064-1074
    140. Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R., and Tang, D. G. (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67, 6796-6805
    141. Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B., and Farrar, W. L. (2008) CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98, 756-765
    142. Sulaiman, A., McGarry, S., Li, L., Jia, D., Ooi, S., Addison, C., Dimitroulakos, J., Arnaout, A., Nessim, C., Yao, Z., Ji, G., Song, H., Gadde, S., Li, X., and Wang, L. (2018) Dual inhibition of Wnt and Yes-associated protein signaling retards the growth of triple-negative breast cancer in both mesenchymal and epithelial states. Molecular oncology
    143. Dubrovska, A., Kim, S., Salamone, R. J., Walker, J. R., Maira, S. M., Garcia-Echeverria, C., Schultz, P. G., and Reddy, V. A. (2009) The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A 106, 268-273
    144. Harvey, K., and Tapon, N. (2007) The Salvador-Warts-Hippo pathway - an emerging tumour-suppressor network. Nat Rev Cancer 7, 182-191
    145. Pan, D. (2007) Hippo signaling in organ size control. Genes Dev 21, 886-897
    146. Zeng, Q., and Hong, W. (2008) The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell 13, 188-192
    147. Zhao, B., Wei, X., Li, W., Udan, R. S., Yang, Q., Kim, J., Xie, J., Ikenoue, T., Yu, J., Li, L., Zheng, P., Ye, K., Chinnaiyan, A., Halder, G., Lai, Z. C., and Guan, K. L. (2007) Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21, 2747-2761
    148. Hao, Y., Chun, A., Cheung, K., Rashidi, B., and Yang, X. (2008) Tumor suppressor LATS1 is a negative regulator of oncogene YAP. J Biol Chem 283, 5496-5509
    149. Dai, X., She, P., Chi, F., Feng, Y., Liu, H., Jin, D., Zhao, Y., Guo, X., Jiang, D., Guan, K. L., Zhong, T. P., and Zhao, B. (2013) Phosphorylation of angiomotin by Lats1/2 kinases inhibits F-actin binding, cell migration, and angiogenesis. The Journal of biological chemistry 288, 34041-34051
    150. Li, Y., Zhou, H., Li, F., Chan, S. W., Lin, Z., Wei, Z., Yang, Z., Guo, F., Lim, C. J., Xing, W., Shen, Y., Hong, W., Long, J., and Zhang, M. (2015) Angiomotin binding-induced activation of Merlin/NF2 in the Hippo pathway. Cell research 25, 801-817
    151. Zhang, H., Pasolli, H. A., and Fuchs, E. (2011) Yes-associated protein (YAP) transcriptional coactivator functions in balancing growth and differentiation in skin. Proc Natl Acad Sci U S A 108, 2270-2275
    152. Zhang, L., Yang, S., Chen, X., Stauffer, S., Yu, F., Lele, S. M., Fu, K., Datta, K., Palermo, N., Chen, Y., and Dong, J. (2015) The hippo pathway effector YAP regulates motility, invasion, and castration-resistant growth of prostate cancer cells. Mol Cell Biol 35, 1350-1362
    153. Guo, Y., Cui, J., Ji, Z., Cheng, C., Zhang, K., Zhang, C., Chu, M., Zhao, Q., Yu, Z., Zhang, Y., Fang, Y. X., Gao, W. Q., and Zhu, H. H. (2017) miR-302/367/LATS2/YAP pathway is essential for prostate tumor-propagating cells and promotes the development of castration resistance. Oncogene 36, 6336-6347
    154. Yu, S., Cai, X., Wu, C., Wu, L., Wang, Y., Liu, Y., Yu, Z., Qin, S., Ma, F., Thiery, J. P., and Chen, L. (2015) Adhesion glycoprotein CD44 functions as an upstream regulator of a network connecting ERK, AKT and Hippo-YAP pathways in cancer progression. Oncotarget 6, 2951-2965
    155. Zhang, Y., Xia, H., Ge, X., Chen, Q., Yuan, D., Chen, Q., Leng, W., Chen, L., Tang, Q., and Bi, F. (2014) CD44 acts through RhoA to regulate YAP signaling. Cell Signal 26, 2504-2513
    156. Fan, Z., Xia, H., Xu, H., Ma, J., Zhou, S., Hou, W., Tang, Q., Gong, Q., Nie, Y., and Bi, F. (2018) Standard CD44 modulates YAP1 through a positive feedback loop in hepatocellular carcinoma. Biomed Pharmacother 103, 147-156
    157. Tanaka, K., Osada, H., Murakami-Tonami, Y., Horio, Y., Hida, T., and Sekido, Y. (2017) Statin suppresses Hippo pathway-inactivated malignant mesothelioma cells and blocks the YAP/CD44 growth stimulatory axis. Cancer Lett 385, 215-224
    158. Drayna, D. T., McLean, J. W., Wion, K. L., Trent, J. M., Drabkin, H. A., and Lawn, R. M. (1987) Human apolipoprotein D gene: gene sequence, chromosome localization, and homology to the alpha 2u-globulin superfamily. DNA 6, 199-204
    159. Appari, M., Werner, R., Wunsch, L., Cario, G., Demeter, J., Hiort, O., Riepe, F., Brooks, J. D., and Holterhus, P. M. (2009) Apolipoprotein D (APOD) is a putative biomarker of androgen receptor function in androgen insensitivity syndrome. Journal of molecular medicine 87, 623-632
    160. Dabir, S., Kluge, A., and Dowlati, A. (2009) The association and nuclear translocation of the PIAS3-STAT3 complex is ligand and time dependent. Molecular cancer research : MCR 7, 1854-1860
    161. Ogata, Y., Osaki, T., Naka, T., Iwahori, K., Furukawa, M., Nagatomo, I., Kijima, T., Kumagai, T., Yoshida, M., Tachibana, I., and Kawase, I. (2006) Overexpression of PIAS3 suppresses cell growth and restores the drug sensitivity of human lung cancer cells in association with PI3-K/Akt inactivation. Neoplasia 8, 817-825
    162. Chung, C. D., Liao, J., Liu, B., Rao, X., Jay, P., Berta, P., and Shuai, K. (1997) Specific inhibition of Stat3 signal transduction by PIAS3. Science 278, 1803-1805

    QR CODE