研究生: |
莊茂雍 Mao-Yung Chuang |
---|---|
論文名稱: |
熱回收式微型渦輪機發電系統之性能測試與比較 Performance Testing and Comparison of Microturbine Generator Systems with Heat Recovery |
指導教授: |
蔣小偉
Hsiao-Wei Chiang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 微型渦輪機 、固定式熱回收系統 、雙輪再生式熱回收系統 、熱回收效率 |
外文關鍵詞: | Microturbine, Recuperator, Regenerator, Effectiveness |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係針對兩具2.6KW與150 kW微型渦輪機(Microturbine)發電系統,建立其性能測試與分析之能量,並針對兩者之性能表現進行比較,俾提供國人未來自行開發微型渦輪引擎及其控制系統之參數設計依據。
實驗設備架設方面,將各類量測元件,如紅外線熱顯像儀、紅外線溫度計、熱電偶、壓力傳感器、流量計、噪音計與轉速計等安裝於適當之位置,並利用PC數據擷取系統將各量測元件測得之燃燒室出口溫度、排氣溫度、壓縮器出口壓力、燃油流量、壓縮器轉速、輸出軸轉速、空氣流量、熱回收系統表面溫度等訊號予以同步擷取記錄。
性能測試方面,本研究包括針對150 kW微型渦輪機發電系統,建立其熱回收系統之熱力性能測試與熱回收效率分析之能量,使用紅外線溫度計與紅外線熱顯像儀量測熱回收系統外罩之溫度分佈。此外,使用3.0kW負載箱代替實際供電負載輸出,量測並記錄微型渦輪機發電系統從零負載、部分負載至全負載,在各狀態下其引擎各性能參數之變化,建立引擎性能基線(Baseline),包括轉速、溫度、壓力、燃油消耗、發電量等。
數值模擬方面,進一步以數值分析軟體GasTurb,來探討引擎在設計點與非設計點之性能曲線,與實驗數據作一分析比較。分析模型之建立將可助於未來Microturbine之開發設計及性能分析預測工作。
最後,將兩系統所得數據如熱效率、熱回收效率及經濟效益等進行比對,提出優缺點,俾提供國人未來自行研發之參考方向。
An investigation was conducted to perform study of a 150 kW and a 2.6kW microturbine generator set with heat recover system including testing and analyses. As a result of that, we can establish the basis for future microturbine generator engine performance, thermal efficiency, and heat recover system design guidelines.
This study will investigate the thermal performance and effectiveness of a 150 kW microturbine regenerator system. Using an infrared thermometer and an infrared camera, we were able to measure the temperature distributions of the shell of a regenerator system. The engine speed, recuperator inlet temperature, exhaust temperature, compressor inlet pressure, and fuel flow rate were measured using the PC-based data acquisition system. The generator set was tested with load bank to establish the baseline performance.
A software program (GasTurb) was used to predict the performance of the microturbine generator set at different operating conditions in order to compare with the test results. With the above testing and analysis, we were able to find out the performance of the 2.6 kW gas turbine engine including thermal efficiency, fuel consumption, horsepower, and the performance of the recuperator.
Finally, the performance, thermal efficiency, and economic benefits were compared to provide future reference and guidance for the industry.
1.McDonald, C. F. and Wilson, D. G., “The Utilization of Recuperated and Regenerated Engine Cycles for High-Efficiency Gas Turbines in the 21st Century,” Applied Thermal Engineering Vol. 16, Nos 8/9, pp. 635-653, 1996.
2.International Gas Turbine Forecast Corporation, “Gas Turbine Forecast:1999-2008,” July 2000.
3.Boyle, J. F. and Nigro, D. N., “Applying the Allison GT-404 “The VIP in Action”,” SAE Paper No.720695, 1972.
4.Cadwell, R. G., Chapman, W. I., and Walch, H. C., “The Ford Turbine-An Engine Designed to Compete with the Diesel,” SAE Paper No.720168, 1972.
5.Best, G. C. and Flanigan, E. E., “Allison GT-404─The VIP Engine─Versatile Industrial Power,” Paper 72-GT-93 Presented at the ASME Gas Turbine and Fluids Engineering Conference and Products Show, San Francisco, California, March 26-30, 1972.
6.Collman, J. S., Amann, C. A., Matthews, C. C., Stettler, R. J., and Verkamp F. J., “The GT-225─An Engine for Passenger-Car Gas-Turbine Research,” SAE Paper, n 750167, pp. 690-712, 1975.
7.Laux, S. C. and Ware, R. N., “Application of a Vehicular Designed, Heavy Duty Gas Turbine Engine to a Military Generator Set,” ASME Paper, 85-GT-125, March 18-21, 1985.
8.Bathie, W. W., “Fundamentals of Gas Turbines─2nd ed.,” John Wiley & Sons, Inc., New York, 1996.
9.Wilson, D. G., “Low-leakage and High-flow Regenerators for Gas Turbine Engines,” Proc. Inst. Mech. Engrs Vol. 207, 195-202, 1993.
10.Wilson, D. G., 1993, “The Supplementary-Fired Exhaust-Heated Cycle for Coal, Wood and Refuse-Derived Fuel,” IMechE, Proceedings of The Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol.207, No.A2, pp.203-208.
11.Kluka, J. A. and Wilson, D. G., 1998, “Low-Leakage Modular Regenerators for Gas Turbine Engines,” ASME Journal of Engineering for Gas Turbines and Power, Vol.120, No.2, pp.358-362.
12.Kang, Y. and McKeirnan, R., 2003, “Annular Recuperator Development and Performance Test for 200kW Microturbine,” ASME Paper No.GT2003-38522.
13.Proeschel, R. A., 2002, “PROE 90TM Recuperator for Microturbine Applications,” ASME Paper No.GT-2002-30406.
14.Rodger, C.J., 2000, “25-5 Kwe Microturbine Design Aspects,” ASME Paper 2000-GT-0626, ASME Turbo Expo, Munich, Germany.
15.Petrie, E. M., Willes, H. Lee, and Taskhashi, M., “Distributed Generation in Development Countries,” 2000.
16.Borbely, A. M., and Kreider, J. F., “Distributed Generation: The Power Paradigm for the New Millennium,” CRC Press, 2001.
17.Borbely-Bartis, A. M., DeSteese, J. G., and Somasundaram, S., “U.S. Installation, Operation, and Performance Standards for Microturbine Generator Sets,” Aug 2000.
18.Rodgers, C., “Microturbine Cycle Options,” ASME Paper No.2001-GT-0552, June 2001.
19.金田武司, “マイクロガスタービンの国内外の開発状況と今後の市場展望,” 三菱綜合工學研究所, March 2001.
20.羅武仁, “微型渦輪機轉子-軸承動態特性分析與測試,” 國立清華大學動力機械工程學系碩士論文, July 2003.
21.溫文龍, “微型渦輪機發電系統實驗研究,” 國立清華大學動力機械工程學系碩士論文, July 2002.
22.王君豪, “微型渦輪機發電系統之性能研究,” 國立清華大學動力機械工程學系碩士論文, July 2004.
23.Rahnke, C. J., “The Variable-Geometry Power Turbine,” SAE Transactions, Vol. 78, paper 690031, 1969.
24.Hirotaka, K., Hirohiko, M., and Kei, M., “Development of Portable Gas Turbine Generator “Dynajet 2.6”,” IHI Engineering Review, Vol. 37, No.3, October 2004.
25.Mattingly, J. D., “Elements of Gas Turbine Propulsion,” McGraw-Hill, Inc., New York, 1996.
26.黃一民, “超小型噴射引擎之性能研究,” 國立清華大學動力機械工程學系碩士論文, July 2002.
27.Kurzke, J., “GasTurb 9.0 for Windows,” User’s Manual, Printed Germany, 2001.
28.Monroe, M.A., Epstein, A.H., Kumakura, H., and Isomura, K., “Component Integration and Loss Sources in 3-5kW Gas Turbines,” ASME Paper No.GT2005-68715, June 2005.