簡易檢索 / 詳目顯示

研究生: 范哲軒
Fan, Zhe-Shuan
論文名稱: 第一原理計算研究LiNi1/3Co1/3Mn1/3O2‧Li2MnO3 材料
First Principle Investigation of Li Ni1/3Co1/3Mn1/3O2‧Li2MnO3 Composite
指導教授: 蔡哲正
Tsai, Cho Jen
口試委員: 林居南
Lin, Jiu Nan
俎永熙
Tsu, Robert
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 66
中文關鍵詞: 鋰電池第一原理
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • LiNi1/3Co1/3Mn1/3O2‧Li2MnO3比起其他的鋰電池正極材料有更高的工作電壓與電容量。Li2MnO3和LiNi1/3Co1/3Mn1/3O2若結合成複合材料,Li2MnO3可提供多餘的鋰原子,LiNi1/3Co1/3Mn1/3O2也可提供基本的結構穩定性,是有潛力的電池材料。然而,此種材料的充放電特性與其結構有密切關聯,在此篇文章中,使用第一原理之軟體VASP來探討LiNi1/3Co1/3Mn1/3O2‧Li2MnO3充放電時的特性,實驗數據包含了充電曲線的模擬、鋰離子擴散活化能之計算,LiNi1/3Co1/3Mn1/3O2中的氧空位所造成的影響。結果顯示LiNi1/3Co1/3Mn1/3O2會在鋰原子取出三分之二時體積會有較大的變化,影響了此材料繼續充放電。這點是影響此材料的關鍵。另外,活化能的計算顯示,LiNi1/3Co1/3Mn1/3O2‧Li2MnO3此複合材料在介面的活化能較低(~0.18eV),因此可推測若兩種材料是以奈米化的程度結合,會有較好的擴散特性,對電池快速充放電有利。本文亦藉由兩種不同比例混合之LiNi1/3Co1/3Mn1/3O2‧Li2MnO3計算,顯示出若LiNi1/3Co1/3Mn1/3O2和Li2MnO3比例為1:1時,體積的變化較小,對循環充放電較為有利。整體來說,LiNi1/3Co1/3Mn1/3O2‧Li2MnO3此複合材料若控制適當的比例與微結構,是有機會取代現今所用的鋰電池材料。


    Abstract …………………………………………………………………………….… I Table of Contents ………………………………………………………………..… II Chapter1. Introduction …………………………………….………………………… 1 1.1 Background …………………………………………….………………………. 1 1.2 Lithium Battery Overview ……………………………………………………... 6 1.2.1 Lithiation/delithiation mechanism ………………………………………... 6 1.2.1.1 Intercalation ………………………………………..................... 7 1.2.1.2 Alloying …………………………………………..................... 8 1.2.1.3 Conversion ………...………………………………….................... 9 1.2.2 Electrolyte ………...…………………………………...... 9 Chapter2. Literature Survey ……...………………………………………………… 13 2.1 Layer LiMO2 ………...…………………………………...................... 13 2.2 Li-excess Mn-based layered oxide : Li2MnO3 ………………………… 16 2-3 Li2MnO3.LiMO2 electrodes ………...……………………………………..… 19 2.4 First principle of lithium insertion electrode materials ……………………..… 22 Chapter 3. First Principle Calculation ……………………………………………… 24 3.1 Many-body quantum mechanics ……………………………………………… 24 3.2 Density Functional Theory ……………………………………………….…… 25 3.3 Kohn-Sham Theory ………………………………………...…………….…… 26 3.4 Approximation Method ……………………………...…………….………..… 27 3.4.1 Local Density Approximation …………………………………………...… 27 3.4.2 Generalized Gradient Approximation ………………………………...… 27 3.4.3 Pseudopotential …………………………………………..………………... 28 Chapter4. Computational Procedure ………………………………..……….……... 39 Chapter5. Result and Discussion …………………………………………………… 37 5.1 Site considerations …………………………………………………………..… 37 5.2 Diffusion activation energy ……………………………………………...….… 40 5.3 Voltage vs. capacity curves and volume curves ……….… 46 5.4 Defect energy calculation ……………………………………………………... 61 Chapter6. Conclusion ………………………………………………………………. 63 Reference …………………………………………………………………………… 64

    [1] Chen-Xi Zu and Hong Li, Energy Environ. Sci.,2011 4, 2614-2624
    [2] T. Nagaura and K. Tozawa, Prog. Batteries Sol.Cells, 1990, 9, 209-217.
    [3] Goojin Jeong, Young-Ugk Kim, Hansu Kim, Young-Jun Kimand Hun-Joon Sohn, Energy Environ. Sci., 2011, 4, 1986-2002
    [4] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson and W. Wilcke, J. Phys. Chem. Lett., 2010, 1, 2193.
    [5] A. F. Burke, Proc. IEEE, 2007, 95, 806.
    [6] S. Amjad, S. Neelakrishnan and R. Rudramoorthy, Renewable Sustainable Energy Rev., 2010, 14, 1104.
    [7] A. Khaligh and Z. Li, IEEE Trans. Veh. Technol., 2010, 59, 2806.
    [8] J. Axen, K. S. Kurani and A. Burke, Transport Policy, 2010, 17, 173.
    [9] Vinodkumar Etacheri, Rotem Marom, Ran Elazari, Gregory Salitra and Doron Aurbach, Energy Environ. Sci., 2011, 4, 3243–3262
    [10] D. Guyomard and J. M. Tarascon, J. Electrochem. Soc., 1992, 139, 937
    [11] D. Aurbach and H. Gottlieb, Electrochim. Acta, 1989, 34, 141.
    [12] John B. Goodenough and Youngsik Kim, Chem. Mater. 2010, 22, 587–603
    [13] Brian L. Ellis, Kyu Tae Lee, and Linda F. Nazar , Chem. Mater. 2010, 22, 691–714
    [14] N. Yabuuchi, Y. Koyama, N. Nakayama and T. Ohzuku, J. Electrochem. Soc., 2005, 152, A1434–a1440.
    [15] Ping He, Haijun Yu, De Li and Haoshen Zhou, J. Mater. Chem., 2012,22, 3680-3695
    [16] Z. L. Liu, A. S. Yu and J. Y. Lee, J. Power Sources, 1999, 81, 416–419.
    [17] T. Ohzuku and Y. Makimura, Chem. Lett., 2001, 7, 642–643.
    [18] N. Yabuuchi, Y. Makimura and T. Ohzuku, J. Electrochem. Soc., 2007, 154, A314–a321.
    [19] J. R. Dahn, Y. D. Wang and J. W. Jiang, Electrochem. Commun., 2007, 9, 2534–2540..
    [20] F. Zhou, X. M. Zhao and J. R. Dahn, J. Electrochem. Soc., 2009, 156, A343–a347.
    [21] M. H. Rossouw and M. M. Thackeray, Mater. Res. Bull., 1991, 26, 463.
    [22] W. Tang, H. Kanoh, X. Yang and K. Ooi, Chem. Mater., 2000, 12, 3271.
    [23] M. H. Rossouw, D. C. Liles and M. M. Thackeray, J. Solid State Chem., 1993, 104, 464.
    [24] P. Kalyani, S. Chitra, T. Mohan and S. Gopukumar, J. Power Sources, 1999, 80, 103.
    [25] A. Robertson and P. G. Bruce, Chem. Mater., 2003, 15, 1984
    [26] C. S. Johnson, J. T. Vaughey, N. Li, S. A. Hackney and M. M. Thackeray, manuscript in preparation
    [27] C. S. Johnson, J.-S. Kim, C. Lefief, N. Li, J. T. Vaughey and M. M. Thackeray, Electrochem. Commun., 2004, 6, 1085.
    [28] Haijun Yu, Hyunjeong Kim, Yarong Wang, Ping He, Daisuke Asakura, Yumiko Nakamura and Haoshen Zhou, Phys. Chem. Chem. Phys., 2012, 14, 6584–6595
    [29] S. H. Kang, P. Kempgens, S. Greenbaum, A. J. Kropf, K. Amine and M. M. Thackeray, J. Mater. Chem., 2007, 17, 2069–2077.
    [30] M. E. Arroyo-de Dompablo, R. Dominko, J. M. Gallardo-Amores, L. Dupont, G. Mali, H. Ehrenberg, J. Jamnik and E. Moran, Chem. Mater., 2008, 20, 5574.
    [31] Van der Ven, M. K. Aydinol, G. Ceder, G. Kresse and J. Hafner, Phys. Rev. B, 1998, 58, 2975.
    [32] P. Hohenberg and W.Kohn, Physical Review B, 1964, 136, B864.
    [33] Robert G Parr and Weitao Yang,Oxford:Oxford University Press, 1994.
    [34] http://en.wikipedia.org/wiki/Pseudopotential
    [35] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865 ,.
    [36] Yukinori Koyama , Isao Tanaka , Miki Nagao , Ryoji Kanno, Y. Koyama et al. /
    Journal of Power Sources, 2009, 189, 798–801
    [37] Y. Koyama et al. / Journal of Power Sources, 2003, 119–121, 644–648
    [38] Michael M. Thackeray, Sun-Ho Kang, Christopher S. Johnson, John T. Vaughey,
    Roy Benedek and S. A. Hackney, J. Mater. Chem., 2007, 17, 3112–3125
    [39] A.Van der Ven, G. Ceder,Journal of Power Sources, 2001, 97-98, 529-531
    [40] A.Van der Ven, G. Ceder, M. Asta and P. D. Tepesch, Physical Review, B 64 (18), 2001, 184307
    [41] Koichi Nakamura, Hiroshi Hirano, Yoshitaka Michihiro, Toshihiro Moriga, Solid State Ionics, 2010, 181, 1359–1365
    [42] Ying Shirley Meng and M. Elena Arroyo-de Dompablo, Energy Environ. Sci., 2009, 2, 589–609
    [43] Yasuharu Okamoto, Journal of The Electrochemical Society, 2012, 159, 2, A152-a157

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE