研究生: |
范哲軒 Fan, Zhe-Shuan |
---|---|
論文名稱: |
第一原理計算研究LiNi1/3Co1/3Mn1/3O2‧Li2MnO3 材料 First Principle Investigation of Li Ni1/3Co1/3Mn1/3O2‧Li2MnO3 Composite |
指導教授: |
蔡哲正
Tsai, Cho Jen |
口試委員: |
林居南
Lin, Jiu Nan 俎永熙 Tsu, Robert |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 鋰電池 、第一原理 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
LiNi1/3Co1/3Mn1/3O2‧Li2MnO3比起其他的鋰電池正極材料有更高的工作電壓與電容量。Li2MnO3和LiNi1/3Co1/3Mn1/3O2若結合成複合材料,Li2MnO3可提供多餘的鋰原子,LiNi1/3Co1/3Mn1/3O2也可提供基本的結構穩定性,是有潛力的電池材料。然而,此種材料的充放電特性與其結構有密切關聯,在此篇文章中,使用第一原理之軟體VASP來探討LiNi1/3Co1/3Mn1/3O2‧Li2MnO3充放電時的特性,實驗數據包含了充電曲線的模擬、鋰離子擴散活化能之計算,LiNi1/3Co1/3Mn1/3O2中的氧空位所造成的影響。結果顯示LiNi1/3Co1/3Mn1/3O2會在鋰原子取出三分之二時體積會有較大的變化,影響了此材料繼續充放電。這點是影響此材料的關鍵。另外,活化能的計算顯示,LiNi1/3Co1/3Mn1/3O2‧Li2MnO3此複合材料在介面的活化能較低(~0.18eV),因此可推測若兩種材料是以奈米化的程度結合,會有較好的擴散特性,對電池快速充放電有利。本文亦藉由兩種不同比例混合之LiNi1/3Co1/3Mn1/3O2‧Li2MnO3計算,顯示出若LiNi1/3Co1/3Mn1/3O2和Li2MnO3比例為1:1時,體積的變化較小,對循環充放電較為有利。整體來說,LiNi1/3Co1/3Mn1/3O2‧Li2MnO3此複合材料若控制適當的比例與微結構,是有機會取代現今所用的鋰電池材料。
[1] Chen-Xi Zu and Hong Li, Energy Environ. Sci.,2011 4, 2614-2624
[2] T. Nagaura and K. Tozawa, Prog. Batteries Sol.Cells, 1990, 9, 209-217.
[3] Goojin Jeong, Young-Ugk Kim, Hansu Kim, Young-Jun Kimand Hun-Joon Sohn, Energy Environ. Sci., 2011, 4, 1986-2002
[4] G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson and W. Wilcke, J. Phys. Chem. Lett., 2010, 1, 2193.
[5] A. F. Burke, Proc. IEEE, 2007, 95, 806.
[6] S. Amjad, S. Neelakrishnan and R. Rudramoorthy, Renewable Sustainable Energy Rev., 2010, 14, 1104.
[7] A. Khaligh and Z. Li, IEEE Trans. Veh. Technol., 2010, 59, 2806.
[8] J. Axen, K. S. Kurani and A. Burke, Transport Policy, 2010, 17, 173.
[9] Vinodkumar Etacheri, Rotem Marom, Ran Elazari, Gregory Salitra and Doron Aurbach, Energy Environ. Sci., 2011, 4, 3243–3262
[10] D. Guyomard and J. M. Tarascon, J. Electrochem. Soc., 1992, 139, 937
[11] D. Aurbach and H. Gottlieb, Electrochim. Acta, 1989, 34, 141.
[12] John B. Goodenough and Youngsik Kim, Chem. Mater. 2010, 22, 587–603
[13] Brian L. Ellis, Kyu Tae Lee, and Linda F. Nazar , Chem. Mater. 2010, 22, 691–714
[14] N. Yabuuchi, Y. Koyama, N. Nakayama and T. Ohzuku, J. Electrochem. Soc., 2005, 152, A1434–a1440.
[15] Ping He, Haijun Yu, De Li and Haoshen Zhou, J. Mater. Chem., 2012,22, 3680-3695
[16] Z. L. Liu, A. S. Yu and J. Y. Lee, J. Power Sources, 1999, 81, 416–419.
[17] T. Ohzuku and Y. Makimura, Chem. Lett., 2001, 7, 642–643.
[18] N. Yabuuchi, Y. Makimura and T. Ohzuku, J. Electrochem. Soc., 2007, 154, A314–a321.
[19] J. R. Dahn, Y. D. Wang and J. W. Jiang, Electrochem. Commun., 2007, 9, 2534–2540..
[20] F. Zhou, X. M. Zhao and J. R. Dahn, J. Electrochem. Soc., 2009, 156, A343–a347.
[21] M. H. Rossouw and M. M. Thackeray, Mater. Res. Bull., 1991, 26, 463.
[22] W. Tang, H. Kanoh, X. Yang and K. Ooi, Chem. Mater., 2000, 12, 3271.
[23] M. H. Rossouw, D. C. Liles and M. M. Thackeray, J. Solid State Chem., 1993, 104, 464.
[24] P. Kalyani, S. Chitra, T. Mohan and S. Gopukumar, J. Power Sources, 1999, 80, 103.
[25] A. Robertson and P. G. Bruce, Chem. Mater., 2003, 15, 1984
[26] C. S. Johnson, J. T. Vaughey, N. Li, S. A. Hackney and M. M. Thackeray, manuscript in preparation
[27] C. S. Johnson, J.-S. Kim, C. Lefief, N. Li, J. T. Vaughey and M. M. Thackeray, Electrochem. Commun., 2004, 6, 1085.
[28] Haijun Yu, Hyunjeong Kim, Yarong Wang, Ping He, Daisuke Asakura, Yumiko Nakamura and Haoshen Zhou, Phys. Chem. Chem. Phys., 2012, 14, 6584–6595
[29] S. H. Kang, P. Kempgens, S. Greenbaum, A. J. Kropf, K. Amine and M. M. Thackeray, J. Mater. Chem., 2007, 17, 2069–2077.
[30] M. E. Arroyo-de Dompablo, R. Dominko, J. M. Gallardo-Amores, L. Dupont, G. Mali, H. Ehrenberg, J. Jamnik and E. Moran, Chem. Mater., 2008, 20, 5574.
[31] Van der Ven, M. K. Aydinol, G. Ceder, G. Kresse and J. Hafner, Phys. Rev. B, 1998, 58, 2975.
[32] P. Hohenberg and W.Kohn, Physical Review B, 1964, 136, B864.
[33] Robert G Parr and Weitao Yang,Oxford:Oxford University Press, 1994.
[34] http://en.wikipedia.org/wiki/Pseudopotential
[35] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865 ,.
[36] Yukinori Koyama , Isao Tanaka , Miki Nagao , Ryoji Kanno, Y. Koyama et al. /
Journal of Power Sources, 2009, 189, 798–801
[37] Y. Koyama et al. / Journal of Power Sources, 2003, 119–121, 644–648
[38] Michael M. Thackeray, Sun-Ho Kang, Christopher S. Johnson, John T. Vaughey,
Roy Benedek and S. A. Hackney, J. Mater. Chem., 2007, 17, 3112–3125
[39] A.Van der Ven, G. Ceder,Journal of Power Sources, 2001, 97-98, 529-531
[40] A.Van der Ven, G. Ceder, M. Asta and P. D. Tepesch, Physical Review, B 64 (18), 2001, 184307
[41] Koichi Nakamura, Hiroshi Hirano, Yoshitaka Michihiro, Toshihiro Moriga, Solid State Ionics, 2010, 181, 1359–1365
[42] Ying Shirley Meng and M. Elena Arroyo-de Dompablo, Energy Environ. Sci., 2009, 2, 589–609
[43] Yasuharu Okamoto, Journal of The Electrochemical Society, 2012, 159, 2, A152-a157