簡易檢索 / 詳目顯示

研究生: 郭柏瑋
Kuo, Po-Wei
論文名稱: 以熱壓法製備非均勻銀摻雜鉍-銻-碲化合物之特性研究
Properties of hot-pressed Bi-Sb-Te compounds with non-uniform Ag doping
指導教授: 廖建能
Liao, Chien-Neng
口試委員: 甘炯耀
Gan, Jon-Yiew
朱旭山
Chu, Hsu-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 69
中文關鍵詞: 熱電材料熱壓橫向西貝克效應非均勻摻雜
外文關鍵詞: Thermoelectric material, Hot press, Transverse Seebeck effect, silver, non-uniform doping
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熱電材料是一種能將熱能與電能相互轉換的材料,應用端包括能回收廢熱的發電機以及致冷元件的使用。大部分的熱電元件其溫度梯度與電場方向是相同的,本實驗中藉著非均勻的銀摻雜Bi0.4Sb1.6Te3熱壓試片在垂直方向的溫度梯度下建立水平方向的電場,此效應稱為橫向Seebeck效應,其分別熱流與電流方向的特性可以提供不同的元件應用方式。
    實驗中確立了純Bi-Sb-Te的熱壓試片性質,且銀摻雜試片亦發現其熱電性質與未摻雜之熱電材料具有顯著差異。透過自行設計的橫向Seebeck量測裝置的實驗結果發現,非均勻的銀摻雜試片中確實具有橫向Seebeck電位差,且冷端之電壓差較熱端為大的非對稱電壓差。藉由實驗與模擬指出,其橫向Seebeck效應的來源應為銀摻雜區域與非銀摻雜區域的Seebeck係數差導致在同溫差下其產生電位差的不同所致。非對稱的橫向電壓差機制來源可能為帶電載子的濃度梯度,熱端載子相對更容易被驅動而致使其電壓差較小,藉由模擬中所導入之經驗參數jemp,將可說明此冷熱端非對稱電壓之結果。
    本研究的實驗與模擬提供了以熱壓製程製備具橫向熱電效應材料之初步構想與模型,其橫向Seebeck係數在模擬值最高達120 μV/K。


    Thermoelectric materials that can convert thermal energy to electric energy and vice versa have been applied in applications of waste-heat recovery and refrigeration. In most thermoelectric devices, the directions of temperature gradient and electric field are the same. In this research, a longitudinal temperature gradient introduces a lateral electric field, which is called transverse Seebeck effect, has been found in hot-pressed Bi0.4Sb1.6Te3 sample with non-uniform Ag doping. The property of uncoupling heat flow and electric flow directions may provide ideas of developing different device applications.
    The thermoelectric properties of both Ag-doped and non-doped Bi-Sb-Te samples have been determined experimentally. The transverse Seebeck effect has been found in non-uniform Ag doping sample with asymmetric transverse voltage in hot side and cold side by a self-designed transverse Seebeck measurement apparatus. The experimental and simulation results shows that transverse Seebeck effect should have been referred to different voltage drops between Ag-doped region and non-doped region. Asymmetric transverse voltage may be related to larger charged carrier flow at high temperature side, which has been expressed as an empirical term jemp in simulation.
    The experimental and simulation results have applied a preliminary model of transverse thermoelectric effect specimen fabrication. The transverse Seebeck coefficient has reached 120 μV/K in simulation.

    致謝 I Abstract IV 摘要 VI 目錄 VII 圖目錄 X 表目錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 熱電簡介 4 2.1.1 Seebeck 效應 4 2.1.2 Peltier 效應 5 2.1.3 Thomson 效應 6 2.1.4 熱電性質 7 2.2 橫向Seebeck效應 8 2.3 Bi2Te3晶體結構 11 2.4 Bi-Sb-Te晶格點缺陷 13 2.5 Bi2Te3冷壓、熱壓製程 15 2.6 銀原子在Bi-Sb-Te系統 18 第三章 實驗設計 21 3.1 實驗流程 21 3.2 試片製備 21 3.2.1 熔煉合金 21 3.2.2 球磨製程 24 3.2.3 加壓成形接續擴散摻雜製程 24 3.3 儀器分析 25 3.3.1 Seebeck係數量測 25 3.3.2 霍爾效應量測 28 3.3.3 熱傳導性質量測 30 3.3.4 微結構分析 31 3.3.5 X光繞射分析 32 3.4 FlexPDE模擬軟體 32 第四章 結果與討論 35 4.1 實驗流程建立 35 4.1.1 冷壓與熱壓製程之比較 35 4.1.2 壓力與溫度對試片性質之影響 37 4.2 銀摻雜試片的製備與分析 39 4.2.1 銀摻雜試片的界面建立 39 4.2.2 退火時間對銀擴散情形之影響 41 4.2.3 銀摻雜區域之成份分析 45 4.2.4 銀摻雜試片之熱電性質分析 47 4.2.5 銀摻雜試片的橫向Seebeck效應分析 49 4.2.5.1 掃描式Seebeck量測 49 4.2.5.2 橫向Seebeck效應量測 52 4.3 FlexPDE模擬橫向Seebeck效應 54 4.3.1 FlexPDE模擬模型建立 54 4.3.2 不對稱電位差與溫差之模擬分析 55 4.3.3 試片尺寸之模擬分析 58 4.3.5 試片性質之分析 60 4.3.6 橫向Seebeck係數的模擬分析 61 第五章 結論 64 5.1 結論 64 5.2 未來研究方向 65 參考文獻 66

    1. Navratil, J.; Klichova, I.; Karamazov, S.; Sramkova, J.; Horak, J. J. Solid State Chem. 1998, 140, (1), 29-37.
    2. Snyder, G. J.; Toberer, E. S. Nat. Mater. 2008, 7, (2), 105-114.
    3. Zahner, T.; Stoiber, C.; Zepezauer, E.; Lengfellner, H. Int. J. Infrared Millimeter Waves 1999, 20, (6), 1103-1111.
    4. Babin, V. P.; Gudkin, T. S.; Dashevskii, Z. M.; Dudkin, L. D.; Iordanishvili, E. K.; Kaidanov, V. I.; Kolomoets, N. V.; Narva, O. M.; Stil'bans, L. S. Sov. Phys.-Semicond. 1974, 8, (4), 478-481.
    5. Goldsmid, H. J. J. Electron. Mater. 2011, 40, (5), 1254-1259.
    6. Wang, G. F.; Cagin, T. Phys. Rev. B 2007, 76, (7).
    7. Horak, J.; Navratil, J.; Stary, Z. J. Phys. Chem. Solids 1992, 53, (8), 1067-1072.
    8. Caillat, T.; Carle, M.; Pierrat, P.; Scherrer, H.; Scherrer, S. J. Phys. Chem. Solids 1992, 53, (8), 1121-1129.
    9. Zhi-Gang Chena, GuangHana, LeiYanga, LinaChenga, JinZou. Progress in Natural Science: Materials International 2012, 22, (6), 535–549.
    10. Medlin, D. L.; Snyder, G. J. Curr. Opin. Colloid Interface Sci. 2009, 14, (4), 226-235.
    11. Lan, Y. C.; Minnich, A. J.; Chen, G.; Ren, Z. F. Adv. Funct. Mater. 2010, 20, (3), 357-376.
    12. Miller, G. R.; Li, C.-Y. J. Phys. Chem. Solids 1965, 26, (1), 173-177.
    13. Horak, J.; Cermak, K.; Koudelka, L. J. Phys. Chem. Solids 1986, 47, (8), 805-809.
    14. Stary, Z.; Horak, J.; Stordeur, M.; Stolzer, M. J. Phys. Chem. Solids 1988, 49, (1), 29-34.
    15. Hashibon, A.; Elsasser, C. Phys. Rev. B 2011, 84, (14).
    16. Jiang, J.; Chen, L. D.; Bai, S. Q.; Yao, Q.; Wang, Q. J. Cryst. Growth 2005, 277, (1-4), 258-263.
    17. Poudel, B.; Hao, Q.; Ma, Y.; Lan, Y. C.; Minnich, A.; Yu, B.; Yan, X. A.; Wang, D. Z.; Muto, A.; Vashaee, D.; Chen, X. Y.; Liu, J. M.; Dresselhaus, M. S.; Chen, G.; Ren, Z. F. Science 2008, 320, (5876), 634-638.
    18. Navratil, J.; Stary, Z.; Plechacek, T. Mater. Res. Bull. 1996, 31, (12), 1559-1566.
    19. Yu, F. R.; Zhang, J. J.; Yu, D. L.; He, J. L.; Liu, Z. Y.; Xu, B.; Tian, Y. J. J. Appl. Phys. 2009, 105, (9).
    20. Cui, J. L. J. Alloy. Compd. 2006, 415, (1-2), 216-219.
    21. Liao, C. N.; Wu, L. C.; Lee, J. S. J. Alloy. Compd. 2010, 490, (1-2), 468-471.
    22. Lin, S. S.; Liao, C. N. J. Appl. Phys. 2011, 110, (9).
    23. Yang, J.; Aizawa, T.; Yamamoto, A.; Ohta, T. J. Alloy. Compd. 2000, 309, (1-2), 225-228.
    24. Hyun, D. B.; Hwang, J. S.; Shim, J. D.; Oh, T. S. J. Mater. Sci. 2001, 36, (5), 1285-1291.
    25. Joshi, G.; Lee, H.; Lan, Y. C.; Wang, X. W.; Zhu, G. H.; Wang, D. Z.; Gould, R. W.; Cuff, D. C.; Tang, M. Y.; Dresselhaus, M. S.; Chen, G.; Ren, Z. F. Nano Lett. 2008, 8, (12), 4670-4674.
    26. Fan, X.; Yang, J. Y.; Zhu, W.; Bao, S. Q.; Duan, X. K.; Zhang, Q. Q. J. Alloy. Compd. 2008, 448, (1-2), 308-312.
    27. X.A. Fan, J. Y. Y., R.G. Chen, W. Zhu, S.Q. Bao. Materials Science and Engineering A 2005.
    28. Klichova, I.; Lostak, P.; Drasar, C.; Navratil, J.; Benes, L.; Sramkova, J. Radiat. Eff. Defects Solids 1998, 145, (3), 245-262.
    29. Lostak, P.; Klichova, I.; Svanda, P.; Sramkova, J. Cryst. Res. Technol. 1999, 34, (8), 995-1004.
    30. Cook, B. A.; Kramer, M. J.; Harringa, J. L.; Han, M. K.; Chung, D. Y.; Kanatzidis, M. G. Adv. Funct. Mater. 2009, 19, (8), 1254-1259.
    31. Hsin-Jay, W.; Sinn-Wen, C. Acta Mater. 2011, 59, (16), 6463-6472.
    32. Sugar, J. D.; Medlin, D. L. J. Alloy. Compd. 2009, 478, (1-2), 75-82.
    33. Fujikane, M.; Kurosaki, K.; Muta, H.; Yamanaka, S. J. Alloy. Compd. 2005, 393, (1-2), 299-301.
    34. Fujikane, M.; Kurosaki, K.; Muta, H.; Yamanaka, S. J. Alloy. Compd. 2005, 387, (1-2), 297-299.
    35. Lee, J. K.; Park, S. D.; Kim, B. S.; Oh, M. W.; Cho, S. H.; Min, B. K.; Lee, H. W.; Kim, M. H. Electron. Mater. Lett. 2010, 6, (4), 201-207.
    36. Chiu, C. H.; Liao, C. N. 國立清華大學碩士論文 2011, p35-67.
    37. Xu, L.; Cui, Y. Y.; Hao, Y. L.; Yang, R. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2006, 435, 638-647.
    38. Carlson, R. O., Anisotropic Diffusion of Copper into Bismuth Telluride. In J. Phys. Chem. Solids, 1960; Vol. 13, pp 65-70.
    39. Huber, W. M.; Li, S. T.; Ritzer, A.; Bauerle, D.; Lengfellner, H.; Prettl, W. Appl. Phys. A-Mater. Sci. Process. 1997, 64, (5), 487-489.
    40. Reitmaier, C.; Walther, F.; Lengfellner, H. Appl. Phys. A-Mater. Sci. Process. 2011, 105, (2), 347-349.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE