研究生: |
彭棋宏 Peng, Qi-Hong |
---|---|
論文名稱: |
Amlexanox藥物可阻絕mS100A4蛋白與V-domain的結合 Amlexanox blocks the interaction between mutant S100A4 and V-domain of RAGE (Receptor for Advanced Glyaction End) |
指導教授: |
余靖
Yu, Chin |
口試委員: |
洪嘉呈
Horng, Jia-Cherng 江昀緯 Chiang, Yun-Wei |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 核磁共振 、蛋白質結構 、S100A4 、V-Domain 、Amlexanox |
外文關鍵詞: | NMR, Protein Structure, S100A4, V-Domain, Amlexanox |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類S100A4蛋白質為S100蛋白質家族之一份子,此系列蛋白質在結構上具有高度相似性,在水溶液狀態下為一同質雙聚體蛋白質,並於人體中具有多樣的生理活性。而其結構中具有EF-hand的部分,可與鈣離子結合而改變構形與多種蛋白質作用,其中RAGE (Receptor for Advanced Glycation End products)蛋白在近年來引起許多科學家的關注。RAGE為一種免疫球蛋白,其與發炎現象、糖尿病等疾病相關。RAGE具有多樣化的配體,他們分別與RAGE蛋白細胞外的不同部分反應,進而誘導細胞產生訊息傳遞的現象。近期研究中,科學家利用表面電漿共振指出,S100A4蛋白會與RAGE蛋白細胞外的V-domain反應。
Amlexanox為目前已商業量產之藥物,其目前主要用於過敏及潰瘍的治療,而本實驗團隊發現其對於S100部分蛋白質具有良好的活性抑制效果。因此,我們希望了解S100A4-RAGEV、S100A4-Amlexanox及S100A4-Amlexanox-RAGEV之間的交互作用,並研究蛋白質錯合物結構及細胞生理活性的影響與變化。
本篇論文中,我們希望藉由核磁共振技術近一步了解S100A4與RAGEV之間的反應,並研究其形成的複合物結構。我們使用了三維核磁共振實驗HNCA、HN(CO)CA、HNCACB、CBCACoNH、HCCH-TOCOSY以及HCCH-COSY等完成蛋白的化學位移判定,再利用二維核磁共振滴定實驗找出S100A4-RAGEV及mS100A4-Amlexanox作用位置,並利用實驗所得之距離、雙面角、氫鍵限制條件等經由電腦計算,解出結構;最後藉由恆溫滴定熱卡計及螢光滴定等數據,藉此推測mS100A4及RAGE-V之結合比例與解離常數。
本研究幫助我們更了解S100蛋白質家族與RAGEV之反應情形,並對於抗癌藥物的研究有更進一步的幫助,然而後續仍需要更多延伸之研究分析相關結果,探討此反應是否可用於癌症及相關疾病之治療。
S100A4 is a homodimeric protein that belongs to the S100 subfamily of EF hand of Calcium binding protein. Calcium bounded S100A4 is known to activate the RAGE receptor and stimulate both ERK and NF-κB signaling. RAGE receptor and S100A4 protein involved in a wide range of inflammation-related pathological states, such as vascular diseases, diabetes, neurodegeneration and cancer. As RAGE receptor and S100A4 play an important role in tumor formation, it is clear that preventing the formation of RAGE-S100A4 multi-protein complex is an effective strategy to inhibit various cancers.
In this study, we elucidated the structural interactions between mS100A4 and RAGE V-domain. We employed a variety of biophysical techniques, including fluorescence spectroscopy, multidimensional NMR spectroscopy, HADDOCK, mutagenesis study and functional assay to characterize the interactions between mS100A4 and RAGE V-domain. The binding constant was determined from fluorescence titration. The binding interfaces upon complex formation of mS100A4 and RAGE V mapping from 15N-1H HSQC titrations. Further HADDOCK modeling and mutagenesis study and functional assay indicated the role of important residues of mS100A4 protein for RAGE V-domain protein interactions. In this study, we also identified amlexanox as a small molecule that can bind to mS100A4 and inhibit the interactions between mS100A4 and the RAGE V-domain, according to our HADDOCK binding model and functional assay studies.
The present study describes the binding properties of mS100A4-Amlexanox and provides knowledge of the binding sites at the molecular level, which facilitate the design of better drugs to disrupt the mS100A4-RAGE pathway and treat various diseases, such as cancer, metastasis, and diabetes.
[1] B.W.Schäfer, C.W.Heizmann, Trends in Biochemical Sciences 1996, 21, 134-140.
[2] aR. Donato, Microscopy research and techniques 2003,60,540-551; bC. W. Heizmann, J. A.Cox, BioMetals 1998, 11, 383-397; cC. W. Heizmann, G. Fritz, B. W. Schafer, Frontiers in bioscience: a journal and virtual library 2002, 7, d1356-1368.
[3] T. Ostendorp, E. Leclerc, A. Galichet, M. Koch, N. Demling, B. Weigle, C. W. Heimann, P. M. H. Kroneck, G. Fritz, EMBO J 2007, 26, 3868-3878.
[4] D. Kiryushko, V. Novitskaya, V. Soroka, J. Klingelhofer, E. Lukanidin, V. Berezin, E.Bock, Molecualr and Cellular Biology 2006, 26, 3625-3638.
[5] N. Leukert, T. Vogl, K Strupat, R. Reichelt, C. Sorg, J.Roth, Journal of Molecular Biology 2006, 359, 961-972.
[6] O. V. Moroz, G. G. Dodson, K.S. Wilson, E. Lukanidin, I. B. Bronstein, Microscopy research and techniques 2003, 60, 581-592.
[7] aN. LÜGering, R. Stoll, K. W. Schmid, T. Kucharzik, H. Stein, G. Burmeister, C. Sorg, W. Domschke, European Journal of Clinical Investigation 1995, 25, 659-664; bR. R. Rustandi, D. M. Baldisseri, K. F. Inman, P. Nizner, S. M. Hamiltion, A. Landar, D. B. Zimmer, D. J. Weber, Biochemistry 2001, 41, 788-796; cS. Tarabykina, M.Kriajevska, D. J. Scott, T. J. Hill, D. Lafitte, P. J. Derrick, G. G. Dodson, E. Lukandin, I. Bronstein, FEBS Letters 2000, 475, 187-191.
[8] Donato, Rosario, Microscopy research and techniques 2003, 60, 540-511.
[9] Kozlova, E. N.; Lukanidin, E. 1999, 258, 249–258
[10] Leclerc, E.; Fritz, G.; Vetter, S. W.; Heizmann, C. W. Biochimica et biophysica acta 2009, 1793, 993–1007.
[11] Welch, D. R.; Wei, L. L. 1998, 155–197.
[12] Takenaga, K. British journal of cancer 1999, 80, 127-132.
[13] Garrett, S. C.; Varney, K. M.; Weber, D. J.; Bresnick, A. R. The Journal of biological chemistry 2006, 281, 677–80.
[14] Rudland, P. S.; Platt-higgins, A.; Renshaw, C.; West, C. R.; Winstanley, J. H. R.; Robertson, L.; Barraclough, R. 2000, 4, 1595–1603.
[15] Gongoll, S.; Peters, G.; Mengel, M.; Piso, P.; Klempnauer, J.; Kreipe, H.; Von Wasielewski, R. Gastroenterology 2002, 123, 1478–1484.
[16] Davies, B. R.; O’Donnell, M.; Durkan, G. C.; Rudland, P. S.; Barraclough, R.; Neal, D. E.; Mellon, J. K. The Journal of pathology 2002, 196, 292–9.
[17] Ismail, N. I.; Kaur, G.; Hashim, H.; Hassan, M. S. Cancer cell international 2008, 8, 12.
[18] Cho, Y. G.; Nam, S. W.; Kim, T. Y.; Kim, Y. S.; Kim, C. J.; Park, J. Y.; Lee, J. H.; Kim, H. S.; Lee J. W.; Park, C. H.; Song, Y. H.; Lee, S. H.; Yoo, N. J.; Lee, J. Y.; Park, W. S. APMIS 2003, 111, 539–545.
[19] Hernan, R.; Fasheh, R.; Calabrese, C.; Frank, A. J.; Maclean, K. H.; Allard, D.; Barraclough, R.; Gilbertson, R. J. 2003, 140–148.
[20] Rosty, C.; Ueki, T.; Argani, P.; Jansen, M.; Yeo, C. J.; Cameron, J. L.; Hruban, R. H.; Goggins, M. The American journal of pathology 2002, 160, 45–50.
[21] Fearon, E. F.; Vogelstein, B. 1990, 61, 759–767.
[22] Bienz, M.; Clevers, H. 2000, 103, 311–320.
[23] Polakis, P. Current opinion in genetics & development 2007, 17, 45–51.
[24] Yan, S.D., et al,. Nature, 1996. 382(6593), 1097-1107
[25] Hofmann, M.A., et al., Journal of Biological Chemistry, 1995.270(43),889-901
[26] Hori, O., et al., Journal of Biological Chemistry, 1995, 270, 25752-25761.
[27] Ramasamy, R., et al., Glycobiology, 2005, 15, 16-28.
[28] Neeper, M., et al., Journal of Biological Chemistry, 1992, 267, 14998-15004.
[29] Leclerc, E., et al., Biochimica et Biophysica Acta (BBA) – Molecular Cell Research, 2009, 1793, 993-1007.
[30] Xie, J., et al., Journal of Biological Chemistry, 2008, 283, 27255-27269
[31] Schmidt, A.M., et al., The Journal of Clinical investigation, 1995, 96, 1395-1403.
[32] Heizmann, C.W., G.E. Ackermann, A. Galichet, Springer Netherlands, 2008, 93-138.
[33] Matsumoto, S., et al., Biochemistry, 2008,47 ,12299-12311
[34] Huttunen, H.J., et al. Journal of Biological Chemistry, 2000, 275, 40096-40105
[35] Businaro, R., et al., Journal of Neuroscience Research, 2006, 83, 897-906
[36] Leclerc, E., et al., Journal of Biological Chemistry, 2007, 282, 31317-31331.
[37] Liyama, M., et al., Cellular Signalling, 2006, 18, 174-182
[38] Scher, H.I. and C.L. Sawyers, Journal of Clinical Oncology, 2005, 23, 8253-8261
[39] Schaeffer, H.J. and M.J. Wever, Molecular and Cellular Biology, 1999, 19, 2435-2444
[40] Martindale, J.L. and N.J. Holbrook, Journal of Cellular Physiology, 2002, 192, 1-15