簡易檢索 / 詳目顯示

研究生: 廖宗信
Tsung-Hsin Liao
論文名稱: 陣列化熱塑性塑膠微非球面透鏡成形技術
Development of the technique for array-type thermoplastic micro-aspherical lens
指導教授: 曾繁根
Fan-Gang Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 78
中文關鍵詞: 熱塑性塑膠靜電力調變微非球面透鏡
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係以陣列式的親疏水圖案配合定量控制來製作出可運用於光儲存系統的微非球面透鏡陣列,藉由定量控制及非接觸力的靜電吸引來達到微非球面透鏡的調變及控制。材料的選擇則以可直接固化之高分子材料來達到陣列成形。
    實驗上為了先行測試機制的可行性與未來學術發展及市場需求分別測試了兩種不同固化方式的材料,其一為利用光固化方式配合微量滴管做定量滴定的負型光阻陣列透鏡;第二種材料則是屬於熱固化式的塑膠材料,配合微量天平來達到定量的目的。最後經由MATLAB軟體中的curve fitting功能做曲面擬合可發現定量機制所製作之透鏡曲面誤差極小,因此可知不論利用微量滴管做滴定或微量天平定量的方法確實可達到控制透鏡體積的目的。經過靜電吸引後,負型光阻所製作的微非球面透鏡其高度約由0.5mm拉升至0.7mm,而經過紅光雷射聚焦光點量測發現光點大小約由2.2um縮小為約1.1um;而熱固化式的塑膠材料其高度由0.535mm拉升至0.627mm,光點大小則約由0.9um縮小至0.624um,在藍光上更從0.78um縮小至0.52um。
    目前微非球面透鏡最大的瓶頸在於批次化困難,若利用射出成型雖可達到量產的目的,但模具的成本頗高,且製作過程更有許多變因需要控制,例如材料應力問題或溫度控制等。因此若能利用微機電製程技術來達到陣列式的微非球面透鏡的製作,將可大大的減低成本。本研究即是設計以簡易的微機電製程來製作出誤差小且光學品質穩定的微非球面透鏡陣列。


    中文摘要 I 誌謝 III 第一章 緒論 1 1.1 前言 1 1.2 光學讀寫頭 3 1.2.1 光學讀寫頭架構與工作原理 3 1.2.2 讀寫頭規格發展 5 1.2.3 CD、DVD與HD-DVD系統比較 7 1.3 非球面鏡[3] 9 1.3.1 非球面之定義 10 1.4 研究動機與目的 12 第二章 文獻回顧 13 2.1 微球面透鏡研製 13 2.2 微非球面透鏡研製 18 2.3 可調變式微透鏡研製 20 第三章 系統架構與理論分析 25 3.1 等光程(CONSTANT OPTICAL LENGTH)理論 [28] 25 3.1.1 邊緣檢測與擬合[28] 26 3.2 像差理論 [29] 29 3.2.1 透鏡像差 30 3.3 系統設置 34 3.3.1 架構設計 34 3.3.2 自組裝定位 37 3.3.3 靜電力吸引 38 3.3.4 材料性質測試 40 第四章 實驗步驟與測試結果 46 4.1 製程步驟 46 4.2 製程結果 49 4.2.1 SU-8下電極基板製程結果 49 4.2.2 熱塑性塑膠下電極基板製程結果 50 4.3 測試結果 53 4.3.1 自組裝定位測試 53 4.3.1.1 SU-8透鏡自組裝定位測試 53 4.3.1.2 熱塑性塑膠COC透鏡自組裝定位測試 54 4.3.2 定量測試 55 4.3.2.1 SU-8定量測試 55 4.3.2.2 熱塑性塑膠定量測試 56 4.3.3 靜電吸引測試 57 4.3.3.1 SU-8靜電吸引測試結果 57 4.3.3.2 COC靜電吸引測試結果 61 4.4 聚焦光點量測 63 4.4.1 SU-8聚焦光點量測 64 4.4.2 COC聚焦光點量測 66 4.4.2.1 COC焦距量測 70 4.5 實驗量測統整 70 第五章 結論與未來工作 74 第六章 參考文獻 76

    [1] B. W. Bell, "DataPlay's mobile recording technology," Optical Data Storage, vol. Vol. 4342, p. 543-552,2001, 2002.
    [2] B. W. B. David L. Blankenbeckler, Jr., Krishna Ramadurai and Roop L. Mahajan "Recent Advancements in DataPlay's Small Form-Factor Optical Disc and Drive " Japanese Journal of Applied Physics, vol. Vol. 45, No. 2B, pp. 1181-1186, 2006, 2006.
    [3] 陳迥廷, "設計與製作應用於光學讀寫頭之微非球面透鏡," 國立清華大學微機電系統工程研究所碩士論文, 民國95年7月.
    [4] Z. D. Popovic, R. A. Sprague, and A. N. Connell, "Technique for the monolithic fabrication of microlens arrays," APPLIED OPTICS, vol. Vol.27, No.7, pp.1281-1284, 1998.
    [5] M. C. Hutley, "Optical techniques for the generation of microlens arrays," Journal of Modern Optics, vol. Vol.37, No.2, pp. 253-265, 1990.
    [6] D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, "The manufacture of microlens by melting photoresist," Measurement Science and Technology, vol. Vo.1, pp.759-766, 1990.
    [7] P. Heremans, J. Genoe, M. Kujik, R. Vounckx, and G. Borghs, "Mushroom microlenses:optimized microlenses by reflow of multiple layers of photoresist," IEEE Photonics Technology Letters, vol. Vol.9, Issue.10, pp.1367-1369, 1997.
    [8] Y.-S. Lin, C.-T. Pan, K.-L. Lin, S.-C. Chen, J.-J. Yang, and J.-P. Yang, "Polyimide as the pedestal of batch fabricated micro-ball lens and micro-mushroom array," IEEE Photonics Technology Letters, vol. pp.337-340, 2001.
    [9] S. K. Lee, M. G. Kim, K. W. Jo, S. M. Shin, and J. H. Lee, "A glass reflowed microlens array on a Si substrate with rectangular through-holes," Journal of Optics a-Pure and Applied Optics, vol. 10, Apr 2008.
    [10] H. Jiang, X. Yuan, Z. Yun, Y.-C. Chan, and Y.-L. Lam, "Fabrication of microlens in photosensitive hybrid sol-gel films using a gray scale mask," Materials Science and Engineering C 16, vol. pp.99-102, 2001.
    [11] J. Chen, W. S. Wang, J. Fang, and K. Varahramyan, "Variable-focusing microlens with microfluidic chip," Journal of Micromechanics and Microengineering, vol. 14, pp. 675-680, May 2004.
    [12] M. Wakaki, Y. Komachi, and G. kanai, "Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser," APPLIED OPTICS, vol. Vol.37, No.4, pp.627-631, 1998.
    [13] Y. Sakurai, S. Okuda, H. Nishiguchi, N. Nagayama, and M. Yokoyama, "Microlens array fabrication based on polymer electrodeposition," Journal of Materials Communication Chemistry, vol. Vol.13, pp.1862-1864, 2003.
    [14] D. S. Kim, S. S. Yang, S.-K. Lee, T. H. Kwon, and S. S. Lee, "Physical modeling and analysis of microlens formation fabricated by a modified LIGA process," Journal of Micromechanics and Microengineering, vol. Vol.13, pp.523-531, 2003.
    [15] N. F. Borrelli, D. L. Morse, R. H. Bellman, and W. L. Morgon, "Photolytic technique for producing microlenses in photosensitive glass," APPLIED OPTICS, vol. Vol.24, pp.2520, 1985.
    [16] D. W. d. L. Monteiro, O. Akhzar-Mehr, P. M. Sarro, and G. Vdovin, "Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si," OPTICS EXPRESS, vol. Vol.11, No.18, pp.2244-2252, 2003.
    [17] J.-S. Lee, M. Saeki, T. Kuriyagawa, and K. Syoji, "A Study on the Mirror Grinding for Mold of a Small Aspherical Lens," International Journal of the Korean Society of Precision Engineering, vol. Vol. 4. No. 3, May 2003.
    [18] M. Yamada, T. Miura, H. Sakakibara, S. Aoki, T. Kanazawa, and T. Watanabe, "A novel microminiaturized aspherical lens with a high numerical aperture," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 42, pp. 895-897, Feb 2003.
    [19] N. Chronis, G. L. Liu, K.-H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," OPTICS EXPRESS, vol. Vol.11, No.19, pp.2370-2378, 2003.
    [20] K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array," Optics Express, vol. 12, pp. 2494-2500, May 31 2004.
    [21] M. Agarwall, R. A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," Journal of Micromechanics and Microengineering, vol. 14, pp. 1665-1673, Dec 2004.
    [22] J. Sei-Hwan, L. Kook-Nyung, J. Yun-Ho, and A. Y.-K. K. Yong-Kweon Kim, "Novel fabrication method of self positioned and focal length tuned microlens," in Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on, 2005, pp. 372-375 Vol. 1.
    [23] C. Chang-Wei and T. Fan-Gang, "Tunable micro-aspherical lens manipulated by 2D electrostatic forces," in Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on, 2005, pp. 376-379 Vol. 1.
    [24] C. C. Cheng and J. A. Yeh, "Dielectrically actuated liquid lens," Optics Express, vol. 15, pp. 7140-7145, Jun 11 2007.
    [25] http://www.research.philips.com/newscenter/archive.
    [26] B.-K. Nquyen, E. Iwase, K. Matsumoto, and I. Shimoyama, "electrically driven varifocal micro lens fabricated by depositing parylene directly on liquid," MEMS 2007, Kobe, Japan, 21-25 January 2007.
    [27] H. Kuo-Yung, T. Fan-Gang, and L. Tsung-Hsin, "Electrostatic-Force-Modulated Microaspherical Lens for Optical Pickup Head," Microelectromechanical Systems, Journal of, vol. 17, pp. 370-380, 2008.
    [28] 陳彰偉, "可調變微球面透鏡與非球面透鏡之研製," 國立清華大學微機電系統工程研究所碩士論文, 民國94年7月.
    [29] 邵穗鵬, "光學透鏡系統實例設計與評估," 國立中央大學機械工程研究所碩士論文, 民 國 九 十 三 年 七 月.
    [30] http://www.polyplastics.com/.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE