研究生: |
林軒漢 Hsuan-Han Lin |
---|---|
論文名稱: |
即時多重乳化微系統之開發 On-Demand Double Emulsification Utilizing Multilayer PDMS Microstructures |
指導教授: |
蘇育全
Yu-Chuan Su |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 微機電系統 、微液滴 、微閥門 、多重乳化 、即時控制 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究所使用的主動式多層矽膠微閥門結構,在氣體流道受壓的情況下矽膠薄膜會緊壓在液體流道上,能有效阻絕液體的流動,搭配多組閥門便可於流道□進行多重乳化與多步驟反應。在雙重乳化過程中,於固定驅動壓力下,可透過電腦自動協調與即時改變閥門系統的開關時間,精確控制所生成雙重乳化微囊胞之幾何結構。先利用前端閥門產生定量液滴,再控制後端閥門的開關時間,將液滴與部分中間相液體導入最外相中形成雙重乳化結構。在初步測試中以模具成形與電暈活化接合所製作的雛形可產生直徑130 μm至190 μm的油滴,並於其中包覆30 μm至90 μm直徑的水滴,透過製程參數的調整最高可達到40%的水滴體積包覆量。此外閥門阻絕液體流動的特性還可運用於液滴介面反應的控制,例如以雙重乳化製程,將海藻酸鈉與氯化鈣溶液分別配置在內、外水相中,在兩相接觸後可於流道內合成海藻酸鈣粒子,理論上搭配適量的閥門即可完成複雜多步驟的反應控制,例如PLL半透膜之製程。本研究所開發的乳化微系統可依需求即時產生特定結構的乳化微囊胞,並於陣列式晶片上對微囊胞進行導向與定位,可望應用在生醫樣本檢測與反應中,達到快速準確且節省材料的目標。
[1] Y. C. Tan, J. S. Fisher, A. I. Lee, et al., Design of Microfluidic Channel Geometries for the Control of Droplet Volume, Chemical Concentration, and Sorting, LAB ON A CHIP, 2004, 4: 292-298
[2] J. Shim, G.. Cristobal, D. R. Link, T. Thorsen, Y. Jia, K. Piattelli and S. Fraden, Control and Measurement of the Phase Behavior of Aqueous Solutions Using Microfluidics, JACS, 2007, 129 (28): 8825 -8835
[3] F. C. Chang, Y. C. Su, Controlled W/O/W Double Emusification in 3-D PDMS Micro-Channels, J. Micromech. Microeng, 2008, 18, 065018
[4] S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, Controlled Production of Monodisperse Double Emusions by Two-Step Breakup in Microfluidic Devices, Langmuir, 2004, 20: 9905-9908
[5] J. H. Xu, S. W. Li, J. Tan, et al., Controllable Preparation of Monodisperse O/W and W/O Emulsions in the Same Microfluidic Device, The ACS Journal of Surfaces and Colloids , 2006, 22 (19)
[6] C. N. Baroud, J. Delville, F. Gallaire, and R. Wunenburger, Thermocapillary Valve for Droplet Production and Sorting, Physical Review E 75, 2007, 046302
[7] B. J. Briscoe, C. J. Lawrence, W. G. P. Mietus, A Review of Immiscible Fluid Mixing, Advanced in Colloid and Interface Science, 1999, 81: 1-17
[8] T. Torsen, R. W. Roberts, F. H. Arnold, S. R. Quake, Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device, Physical Review Letters, 2001, 86(18): 4163-4166
[9] T. Nisisako, T. Torii, T. Higuchi, Droplet Formation in a Microchannel Network, Lab on a chip, 2002, 2(1): 24-26
[10] V. Steijn, M. T. Kreutzer, C. R. Kleijn, μ-PIV Study of the Formation of Segmented Flow in Microfluidic T-junctions, Chemical Engineering Science 2007, 62, 7505-7514
[11] S. L. Anna, N. Bontoux, H. A. Stone, Formation of Dispersions Using “Flow Focusing” in Microchannels, Applied Physics Letters, 2003, 82(3): 364-366
[12] D. R. Link, S. L. Anna, D. A. Weitz, H. A. Stone, Geometrically Mediated Breakup of Drops in Microfluidics Devices, Physical Review Letters, 2004, 92(5)
[13] H. Song and R. F. Ismagilov, Millisecond Kinetics on a Microfluidic Chip Using Nanoliters of Reagents, JACS, 2003, 125: 14613-14619
[14] L. H. Hung, K. M. Choi, W. Y. Tseng, Y. C. Tan, K. J. Shea and A. P. Lee, Alternating Droplet Generation and Controlled Dynamic Droplet Fusion in Microfluidic Device for Cds Nanoparticle Synthesis, Lab Chip, 2006, 6: 174-178
[15] H. Song, J. D. Tice and R. F. Ismagilov, A Microfluidic System for Controlling Reaction Networks in Time, Angew. Chem., 2003, 42: 767-772
[16] M. Prakash and N. Gershenfeld, Microfluidic Bubble Logic, Science, 2007, 315: 832-835
[17] K. Iwai, W. H. Tan and S. Takeuchi, A Resettable Dynamic Microfluidic Device, IEEE MEMS, 2008
[18] S. Okushima, T. Nasisako, T. Torii, and T. Higuchi, Controlled Production of Monodisperse Double Emulsion by Two-Step Droplet Breakup in Microfluidic Devices, Langmuir, 2004, 20: 9905-9908
[19] J. M. Kohler, Th. Henkel, A. Grodrian, Th. Kirner, M. Roth, K. Martin, J. Metze, Digital Reaction Technology by Micro Segmented Flow─Components, Concepts and Applications, Chemical Engineering Journal, 2004, 101: 201-216
[20] D. R. Link, E. Grasland-Mongrain, A. Duri, F. Sarrazin, Z. Cheng, G. Cristobal, M. Marquez, D. A. Weitz, Electric Control of Droplets in Microfluidic Devices, Angew. Chem., 2006, 45:2556-2560
[21] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, S. R. Quake, Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography, Science, 2000, 288(7):113-116
[22] V. Studer, G. Hang, A. Pandolfi, M. Ortiz, W. F. Anderson, S. R. Quake, Scaling Properties of A Low-Actuation Pressure Microfluidic Valve, Journal of Applied Physics, 2004, 95(1):393-398
[23] P. C. Lin, Y. C. Su, On-Demand Liquid-in-Liquid Droplet Metering and Fusion Utilizing Pneumatical-Actuated Membrane-Type Valves, 清華大學碩士論文, 2008.
[24] Y. Morimoto, W. H. Tan, S. Takeuchi, “Housing” for Cells in Monodisperes Microcages, MEMS, 2008.
[25] Z. Nie, S. Xu, M. Seo, P. C. Lewis, E. Kumacheva, Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactor, JACS, 2005, 127:8058-8063
[26] K. Haubert, T. Drier, D. Beebe, PDMS Bonding by means of A Portable, Low-cost Corona System. LAB ON A CHIP, 2006, 6 (7): 1548-1549
[27] SU-8 3000 Permanent Epoxy Negative Photoresist, MICROCHEM, http://www.microchem.com