簡易檢索 / 詳目顯示

研究生: 王苡榕
Wang, Yi Jung
論文名稱: 利用光纖雷射產生高功率似噪音脈衝
Generation of high-power noise-like pulses by a Yb-doped dispersion-mapped fiber laser
指導教授: 潘犀靈
Pan, Ci Ling
口試委員: 潘犀靈
Pan, Ci Ling
項維巍
Hsiang, Wei Wei
林恭如
Lin, Gong Ru
張存續
Chang, Tsun Hsu
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 62
中文關鍵詞: 似噪音脈衝光纖雷射
外文關鍵詞: noise-like pulse, fiber laser
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們設計及架設一台利用雙級摻鐿光纖放大器的主振盪器功率放大器結構之高功率似噪音脈衝 (noise-like pulse)產生裝置。種子光源架設為映射色散光纖雷射 (dispersion-mapped fiber laser),前級放大器是以光纖纖核直徑為10 μm的摻鐿光纖放大器,主要放大器為光纖纖核直徑為30 μm的摻鐿光纖放大器。種子光源 (波長=1064 nm) 經過兩級光放大器後,平均輸出功率可達14.7 W,脈衝重複率~ 15 MHz,脈衝能量0.98 μJ,頻譜半高寬46.5 nm。
    似噪音脈衝在時間尺度上是由相對寬的波包(次奈秒等級)以及相對較窄的內部結構(次皮秒等級)組成,其脈衝振幅與寬度是隨機分布。同時其帶寬於頻域上相當的寬,這樣特性使其得以在介質中傳播很長一段距離仍不會失真。經過前級放大器後,波包不會隨著能量提升而有顯著的變化,較窄的內部結構會隨著能量提升,其脈衝寬度有明顯的下降,再經過主放大器後,波包與較窄的內部結構特性及變化趨勢與前級放大器結果相似。為了進一步了解似噪音脈衝放大行為,我們利用非線性薛丁格方程式及速率方程式來模擬及分析,理論模擬結果與實驗數據的趨勢吻合。


    We designed constructed and analyzed a dual-stage fiber amplifier to amplify noise-like pulses (NLP) from a dispersion-mapped fiber laser. The dual-stage amplifier system was composed of a 10-μm-core Yb-doped fiber as pre-amplifier and a 30-μm-core Yb-doped fiber as the main amplifier. We achieved an amplified NLP of the highest output average power of 14.7 W with a repetition rate of 15 MHz, and the pulse energy of 0.98 μJ.
    NLP exhibits a very smooth and broadband spectrum, a double-scale autocorrelation trace with a sub-picosecond peak riding and a wide sub-nanosecond pedestal. Light sources generating pulse with such narrow autocorrelation and broadband spectra, capable of propagating without distortion over a long distance. After the pre-amplifier, the pedestal duration increased slightly when the pump power increased, while the spike duration decreased dramatically. After the main amplifier, the trend of the pedestal and the spike duration is very similar to the pre-amplifier. The numerical result of the pedestal duration based on the nonlinear Schrodinger equation (NLSE) also changed slightly and the spike duration decreased when the pump power increased, which had the same tendency as the experimental results.

    中文摘要 I Abstract II 致謝 III Table of Contents IV List of Figures VI List of Tables XI List of Abbreviations XII Chapter 1 Introduction 1 Chapter 2 Background 3 2.1 Mode-locking 3 2.1.1. Mode-locking theory 3 2.1.2. Active mode-locking 4 2.1.3. Passive mode-locking 5 2.1.4. Nonlinear polarization evolution (NPE) 6 2.2 Noise like pulses (NLP) 8 2.3 Fiber laser and fiber amplifier 9 2.3.1. Rare-earth doped active fiber 9 2.3.2. Ytterbium (Yb) doped active fiber 9 2.3.3. Effect of pumping wavelength of the laser diode 11 2.3.4. Amplified Spontaneous Emission (ASE) 11 2.4 Nonlinearities in optical fibers 11 2.4.1. Self-Phase modulation (SPM) 12 2.4.2. Stimulated Raman Scattering (SRS) 13 2.5 Theoretical analysis of the optical fiber amplifier 15 2.5.1. Nonlinear Schrodinger Equation 15 2.5.2. Rate equation analysis 18 Chapter 3 Experimental Methods 20 3.1 Dispersion-mapped fiber laser 20 3.1.1. Experimental setup 20 3.1.2. The nonlinear Schrodinger equation result 21 3.1.3. Characteristics 26 3.2 The pre-amplifier stage 33 3.2.1. The rate equation analysis 33 3.2.2. Experimental setup 35 3.2.3. The nonlinear Schrodinger equation 36 3.2.4. Characteristics 39 3.3 The main amplifier 45 3.3.1. The rate equation analysis 45 3.3.2. Experimental setup 47 3.3.3. The nonlinear Schrodinger equation result 48 3.3.4. Characteristics 51 Chapter 4 Conclusions 58 References 60

    U. Keller, "Recent developments in compact ultrafast lasers," Nature, vol. 424, pp. 831-838, 2003.
    [2] X. Liu, D. Du, and G. Mourou, "Laser ablation and micromachining with ultrashort laser pulses," IEEE Journal of Quantum Electronics, vol. 33, pp. 1706-1716, Oct 1997.
    [3] S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, et al., "Ablation of metals by ultrashort laser pulses," JOSA B, vol. 14, pp. 2716-2722, 1997.
    [4] Y.-J. You, C. Wang, Y.-L. Lin, A. Zaytsev, P. Xue, and C.-L. Pan, "Ultrahigh-resolution optical coherence tomography at 1.3 μm central wavelength by using a supercontinuum source pumped by noise-like pulses," Laser Physics Letters, vol. 13, p. 025101, 2015.
    [5] L. M. Zhao, D. Y. Tang, T. H. Cheng, H. Y. Tam, and C. Lu, "120 nm Bandwidth noise-like pulse generation in an erbium-doped fiber laser," Optics Communications, vol. 281, pp. 157-161, 1/1/ 2008.
    [6] J. C. Hernandez-Garcia, O. Pottiez, and J. M. Estudillo-Ayala, "Supercontinuum generation in a standard fiber pumped by noise-like pulses from a figure-eight fiber laser," Laser Physics, vol. 22, pp. 221-226, 2012/01/01 2012.
    [7] B. Nie, G. Parker, V. V. Lozovoy, and M. Dantus, "Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses," Optical Engineering, vol. 53, pp. 051505-051505, 2013.
    [8] W. E. Lamb Jr, "Theory of an optical maser," Physical Review, vol. 134, p. A1429, 1964.
    [9] H. A. Haus, "Mode-locking of lasers," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 6, pp. 1173-1185, 2000.
    [10] B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of photonics vol. 22: Wiley New York, 1991.
    [11] L. Hargrove, R. Fork, and M. Pollack, "Locking of He–Ne laser modes induced by synchronous intracavity modulation," Applied Physics Letters, vol. 5, pp. 4-5, 1964.
    [12] V. Matsas, T. Newson, D. Richardson, and D. N. Payne, "Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation," Electron. Lett, vol. 28, pp. 1391-1393, 1992.
    [13] H. Xu, "Nonlinear PolarizationRotationfor Fiber Laserswith UltraHigh Pulse Energy."
    [14] M. Horowitz, Y. Barad, and Y. Silberberg, "Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser," Opt Lett, vol. 22, pp. 799-801, Jun 1 1997.
    [15] L. Zhao, D. Tang, J. Wu, X. Fu, and S. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Optics express, vol. 15, pp. 2145-2150, 2007.
    [16] D. Tang, L. Zhao, and B. Zhao, "Soliton collapse and bunched noise-like pulse generation in a passively mode-locked fiber ring laser," Opt. Express, vol. 13, pp. 2289-2294, 04/04 2005.
    [17] S. Smirnov, S. Kobtsev, S. Kukarin, and A. Ivanenko, "Three key regimes of single pulse generation per round trip of all-normal-dispersion fiber lasers mode-locked with nonlinear polarization rotation," Opt. Express, vol. 20, pp. 27447-27453, 11/19 2012.
    [18] S.-S. Lin, S.-K. Hwang, and J.-M. Liu, "Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses," Optics Express, vol. 22, pp. 4152-4160, 2014/02/24 2014.
    [19] K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of Applied Physics, vol. 91, p. 576, 2002.
    [20] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fibre amplifiers," IEEE Journal of quantum electronics, vol. 33, pp. 1049-1056, 1997.
    [21] S. P. Singh and N. Singh, "Nonlinear effects in optical fibers: Origin, management and applications," Progress In Electromagnetics Research, vol. 73, pp. 249-275, 2007.
    [22] R. Stolen and C. Lin, "Self-phase-modulation in silica optical fibers," Physical Review A, vol. 17, p. 1448, 1978.
    [23] C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, pp. 501-502, Jan-Jun 1928.
    [24] R. H. Stolen, E. Ippen, and A. Tynes, "Raman oscillation in glass optical waveguide," Applied Physics Letters, vol. 20, pp. 62-64, 1972.
    [25] S. P. Singh, R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, vol. 74, pp. 379-405, 2007.
    [26] G. P. Agrawal, Nonlinear fiber optics, 4 ed.: Academic Press, 2007.
    [27] Z. Varallayay, "Nonlinear wave propagation and ultrashort pulse compression in step index and microstructured fibers''," PHD Thesis, Budapest University of Technoligy and Economics Atomic Physics Department, 2007.
    [28] F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Physical Review Letters, vol. 92, p. 213902, 05/27/ 2004.
    [29] C. Barnard, P. Myslinski, J. Chrostowski, and M. Kavehrad, "Analytical Model for Rare-Earth-Doped Fiber Amplifiers and Lasers," IEEE Journal of Quantum Electronics, vol. 30, pp. 1817-1830, Aug 1994.
    [30] A. Zaytsev, C.-H. Lin, Y.-J. You, C.-C. Chung, C.-L. Wang, and C.-L. Pan, "Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers," Optics Express, vol. 21, pp. 16056-16062, 2013/07/01 2013.
    [31] S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, "Generation of double-scale femto/pico-secondoptical lumps in mode-locked fiber lasers," Opt. Express, vol. 17, pp. 20707-20713, 11/09 2009.
    [32] Y. Wang, A. Martinez-Rios, and H. Po, "Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking," Optics communications, vol. 224, pp. 113-123, 2003.
    [33] H. Shao, K. Duan, Y. Zhu, H. Yan, H. Yang, and W. Zhao, "Numerical analysis of Ytterbium-doped double-clad fiber lasers based on the temperature-dependent rate equation," Optik-International Journal for Light and Electron Optics, vol. 124, pp. 4336-4340, 2013.
    [34] C. Hsuan, "用雙色飛秒雷射合成波形研究聚甲基丙烯酸甲酯中的光消蝕現象," 清華大學光電工程研究所學位論文, pp. 1-160, 2015.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE