簡易檢索 / 詳目顯示

研究生: 羅學豐
Luo, Xue-Feng
論文名稱: 利用螢光生命期影像顯微技術研究螢光素分子被金奈米三角板增強螢光之效應
Investigating the Metal-enhanced Fluorescence Effect on Fluorescein by Gold-Nanotriangles Using Fluorescence Lifetime Imaging Microscopy
指導教授: 陳益佳
Chen, I-Chia
口試委員: 陳仁焜
Chen, Jen-Kun
李英裕
Lee, Yin-Yu
陳益佳
Chen, I-Chia
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 123
中文關鍵詞: 金屬增強螢光奈米粒子螢光影像時間解析光譜靜態光譜化學動力學
外文關鍵詞: FL imaging, steady state spectra
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 吾人研究螢光素與金奈米三角板之間的距離及金板構形對金屬增強螢光效應的影響,使用不同厚度二氧化矽作為間隙物連接染料與金奈米三角板,合成條件使用鹼性溶液。利用自架式靜態螢光光譜和時間解析螢光光譜技術(FLIM+TCSPC)分別得到螢光的增強倍數和生命期。合成邊長40 nm的金奈米三角板並包覆上厚度(LS)為16、20、25、30、35 nm的二氧化矽殼層,以了解距離對螢光增強效應的影響。由靜態螢光光譜可知,隨著二氧化矽殼層厚度增加,螢光增強效應減弱,其螢光增強倍數為1- 2.89,從螢光生命期影像所得到螢光強度也證實隨著二氧化矽殼層厚度增加,螢光增強效應減弱。從時間解析螢光光譜可知,當染料靠近金奈米三角板時,生命期變短,在16-30 nm的厚度中,較短的生命期為118、144、156 ps且較長的生命期為1.48、1.56、1.67 ns,當兩者距離相隔很遠時,則呈現單指數衰減,如奈米金方在50 nm的厚度中生命期為3.17 ns。吾人依此數據依之前的動力學模型,認為受奈米粒影響之激發態染料以放光kr,m或非輻射緩解knr回到基態,令ka=kr,m+knr,由實驗所得的衰減生命期及動力模式推估以ka表示此兩過程的總和,其數值範圍為4.38–0.62x109 s-1,此處kr,m為受到金奈米粒影響的放光速率常數,當染料耦合到金奈米三角板的明亮模式,此能量傳遞之速率常數為kb,其數值範圍為1.12–0.32x109 s-1,能量傳遞到此模式的金奈米三角板後,金奈米三角板可以放出光子至遠場ke或是回傳能量至激發態的染料kc,其數值範圍為0.79–4.38x109 s-1,若染料耦合到較高級數的共振暗模式時,能量多以熱的方式釋出,此過程之速率常數以kd表示,其數值範圍為2.86 — 0.66x109 s-1,本研究中計算出速率常數kb和kd正比於距離d-n ,而n值分別為1.66和2.02。


    The interaction between gold nanotriangles with silica spacer and the fluorophore Fluorescein isocyanate(FITC) is studied using time -resolved fluorescence spectroscopy. Fixed size of AuNTs with controlled thickness of silica shell were synthesized to investigate the metal enhanced fluorescence effect. Fluorophore FITC covalently connected to prefunctionlized silica surface has overlapped with the quadrupole mode resonance of gold nanotriangles. The enhancement factor of AuNT@SiO2@FITC at 16/2025/30/35 nm are 2.89/1.99/1.36/1.2/1.0 for diameter 40 nm. Biexponential decay of emission is observed for 16-35nm silica shell spacer indicating multiple pathways for relaxation of excited states. Time τ_1 and τ_2 both are consistently increased with increased thickness of silica spacer. The biexponential decay is explained that the energy back transfer of the bright modes of AuNTs to FITC is nonnegligible, in order to derive each component of rate constant, We synthesized SiO2@FITC and obtained the rate constant of knr .We acquired that rate constant for energy transfer from FITC to bright mode of AuNTs is 1.12x109 to 0.32x109 s-1 and rate constant for energy transfer from FITC to dark mode of AuNTs is 2.86x109 to 0.66x109 s-1 for separation 16-35 nm, displaying a dependence to the separation of silica shell d-n with n= 1.66 and 2.02, respectively.

    目錄 目錄----vi 圖目錄-- ix 表目錄-- xvi 第1章 序論------ 1 1.1 螢光生命期影像簡介--- 1 1.2 研究動機---- 4 1.3 研究方法---- 4 第2章 表面電漿共振與金屬增強螢光之理論---- 5 2.1 金屬表面電漿共振效應----5 2.2 核殼型奈米粒子的基礎金屬增強螢光理論模型------- 12 2.3 金屬增強螢光的增強與淬息----- 14 第3章 文獻回顧-- 19 3.1.1 金屬奈米粒子增強螢光效應之影響因素-- 19 3.1.2 金屬奈米粒子粒徑-- 20 3.1.3 金屬奈米粒子的共振吸收峰與染料吸收和放光峰耦合程度---- 22 3.1.4 染料與金屬奈米粒子之間的距離--24 3.2 螢光素異硫氰酸酯---- 27 3.3 二氧化矽殼層材料---- 30 第4章 樣品製備-- 33 4.1 合成三角奈米金板---- 33 4.2 合成三角奈米金板包覆二氧化矽層--33 4.3 修飾螢光素異硫氰酸酯(FITC)於包覆二氧化矽奈米金板----34 4.4 製備FLIM樣品 ----35 4.5 製備逐層法樣品用於以抗生素蛋白為間隙物之實驗----35 4.5.1 合成微米金板-----37 4.5.2 單層抗生物素蛋白於微米金板----38 4.5.3 雙層抗生物素蛋白於微米金板----38 第5章 儀器架設----40 5.1 前言---------40 5.2 時間相關單一光子計數系統-------41 5.2.1 原理-----41 5.2.2 分數式鑑別器-------44 5.2.3 時間-振幅轉換器----45 5.3 時間解析光譜---------45 5.3.1 螢光生命期影像系統--45 5.3.2 壓電移動平台--------47 5.3.3 微通道板光電倍增管 (MCP-PMT)-----47 5.3.4 時間相關單一光子計數擷取卡--------50 5.3.5 三酸硼鋰晶體------50 5.3.6 螢光生命期影像系統(FLIM)架設步驟---53 5.4 自架式靜態螢光光譜----57 5.5 掃描式電子顯微鏡------58 5.6 靜態吸收光譜----------59 5.7 靜態螢光光譜----------60 第6章 實驗結果與討論-------61 6.1 樣品之特性-----------61 6.1.1 SEM與TEM影像------61 6.2 奈米金板之靜態吸收光譜圖-----68 6.3 螢光素之放光特性-------------70 6.4 FLIM影像大小與生命期校正-----75 6.5 樣品之時間解析光譜-----------78 6.5.1 螢光素修飾於二氧化矽奈米三角金板之螢光生命期影像------78 6.5.2 螢光素修飾於二氧化矽奈米三角金板之時間解析螢光光譜----82 6.6 螢光素修飾於二氧化矽奈米三角金板之螢光增強倍率----------86 6.7 動力學模型----89 第7章 結論-------96 第8章 附錄-------97 8.1 染料YP-37之螢光放光特性-------97 8.2 逐層法樣品之螢光生命期影像-----99 8.3 逐層法實驗數據比較與探討-------101 Reference------------------------104

    [1] Kuimova, M.K., G. Yahioglu, J.A. Levitt, and K. Suhling,Journal of the American Chemical Society, 2008. 130(21): p. 6672.
    [2] Herman, P., H.-J. Lin, and J.R. Lakowicz,Biomedical Photonics Handbook, 2003: p. 9.
    [3] Lin, H.-H. and I.-C. Chen,The Journal of Physical Chemistry C, 2015. 119(47): p. 26663.
    [4] Liu, Y.-T., X.-F. Luo, Y.-Y. Lee, and I.-C. Chen,Dyes and Pigments, 2021. 190: p. 109263.
    [5] Kelly, K.L., E. Coronado, L.L. Zhao, and G.C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. 2003, ACS Publications.
    [6] Ren, Y., H. Qi, Q. Chen, S. Wang, and L. Ruan,Journal of Quantitative Spectroscopy and Radiative Transfer, 2017. 199: p. 45.
    [7] Shuford, K.L., M.A. Ratner, and G.C. Schatz,The Journal of chemical physics, 2005. 123(11): p. 114713.
    [8] Lakowicz, J.R.,Analytical biochemistry, 2001. 298(1): p. 1.
    [9] Sun, S., I.L. Rasskazov, P.S. Carney, T. Zhang, and A. Moroz,The Journal of Physical Chemistry C, 2020. 124(24): p. 13365.
    [10] Anger, P., P. Bharadwaj, and L. Novotny,Physical review letters, 2006. 96(11): p. 113002.
    [11] Bhowmick, S., S. Saini, V.B. Shenoy, and B. Bagchi, Resonance energy transfer from a fluorescent dye to a metal nanoparticle. 2006, American Institute of Physics.
    [12] Sen, T., S. Sadhu, and A. Patra,Applied physics letters, 2007. 91(4): p. 043104.
    [13] Jennings, T., M. Singh, and G. Strouse,Journal of the American Chemical Society, 2006. 128(16): p. 5462.
    [14] Chhabra, R., J. Sharma, H. Wang, S. Zou, S. Lin, H. Yan, S. Lindsay, and Y. Liu,Nanotechnology, 2009. 20(48): p. 485201.
    [15] Griffin, J., A.K. Singh, D. Senapati, P. Rhodes, K. Mitchell, B. Robinson, E. Yu, and P.C. Ray,Chemistry–A European Journal, 2009. 15(2): p. 342.
    [16] Härtling, T., P. Reichenbach, and L. Eng,Optics Express, 2007. 15(20): p. 12806.
    [17] Liu, S.-Y., L. Huang, J.-F. Li, C. Wang, Q. Li, H.-X. Xu, H.-L. Guo, Z.-M. Meng, Z. Shi, and Z.-Y. Li,The Journal of Physical Chemistry C, 2013. 117(20): p. 10636.
    [18] Ray, K., R. Badugu, and J.R. Lakowicz,Chemistry of Materials, 2007. 19(24): p. 5902.
    [19] Dragan, A. and C. Geddes,Physical Chemistry Chemical Physics, 2011. 13(9): p. 3831.
    [20] Abadeer, N.S., M.R. Brennan, W.L. Wilson, and C.J. Murphy,ACS nano, 2014. 8(8): p. 8392.
    [21] Schneider, G., G. Decher, N. Nerambourg, R. Praho, M.H. Werts, and M. Blanchard-Desce,Nano letters, 2006. 6(3): p. 530.
    [22] Gerasimova, M.A., F.N. Tomilin, E.Y. Malyar, S.A. Varganov, D.G. Fedorov, S.G. Ovchinnikov, and E.A. Slyusareva,Dyes and Pigments, 2020. 173: p. 107851.
    [23] Li, L., G. Rao, X. Lv, R. Chen, X. Cheng, X. Wang, S. Zeng, and X. Liu,Journal of biomedical optics, 2018. 23(2): p. 020501.
    [24] Graf, C., Q. Gao, I. Schütz, C.N. Noufele, W. Ruan, U. Posselt, E. Korotianskiy, D. Nordmeyer, F. Rancan, and S. Hadam,Langmuir, 2012. 28(20): p. 7598.
    [25] Chen, L., F. Ji, Y. Xu, L. He, Y. Mi, F. Bao, B. Sun, X. Zhang, and Q. Zhang,Nano letters, 2014. 14(12): p. 7201.
    [26] Nguyen, S.C., Q. Zhang, K. Manthiram, X. Ye, J.P. Lomont, C.B. Harris, H. Weller, and A.P. Alivisatos,Acs Nano, 2016. 10(2): p. 2144.
    [27] Asselin, J., P. Legros, A. Grégoire, and D. Boudreau,Plasmonics, 2016. 11(5): p. 1369.
    [28] Aslan, K., M. Wu, J.R. Lakowicz, and C.D. Geddes,Journal of the American Chemical Society, 2007. 129(6): p. 1524.
    [29] Wu, C., B. Bull, C. Szymanski, K. Christensen, and J. McNeill,ACS nano, 2008. 2(11): p. 2415.
    [30] Becker, W.,Medical Photonics, 2015. 27: p. 41.
    [31] Lakowicz, J.R., Principles of fluorescence spectroscopy. 2013: Springer science & business media.
    [32] Wahl, M. and S. Orthaus-Müller,Technical Note PicoQuant GmbH, Germany, 2014.
    [33] Wahl, M. TCSPC technote. 2014; 14].
    [34] P-733.3 CL controller Datasheet. 2020.
    [35] hydraharp400 technote.
    [36] Yasukuni, R., K. Ouhenia-Ouadahi, L. Boubekeur-Lecaque, N. Félidj, F.o. Maurel, R.m. Métivier, K. Nakatani, J. Aubard, and J. Grand,Langmuir, 2013. 29(41): p. 12633.
    [37] Imhof, A., M. Megens, J. Engelberts, D. De Lang, R. Sprik, and W. Vos,The Journal of Physical Chemistry B, 1999. 103(9): p. 1408.
    [38] Martini, M., M. Montagna, M. Ou, O. Tillement, S. Roux, and P. Perriat,Journal of Applied Physics, 2009. 106(9): p. 094304.
    [39] Vitali, M., D. Bronzi, A.J. Krmpot, S.N. Nikolić, F.-J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, and L. Terenius,IEEE Journal of Selected Topics in Quantum Electronics, 2014. 20(6): p. 344.
    [40] Magde, D., G.E. Rojas, and P.G. Seybold,Photochemistry and Photobiology, 1999. 70(5): p. 737.
    [41] Wu, C., C. Szymanski, Z. Cain, and J. McNeill,Journal of the American Chemical Society, 2007. 129(43): p. 12904.
    [42] Brann, T., D. Patel, R. Chauhan, K.T. James, P.J. Bates, M.T. Malik, R.S. Keynton, and M.G. O’Toole,Journal of nanomaterials, 2016. 2016.
    [43] Reineck, P., D. Gómez, S.H. Ng, M. Karg, T. Bell, P. Mulvaney, and U. Bach,ACS nano, 2013. 7(8): p. 6636.
    [44] Saini, S., S. Bhowmick, V.B. Shenoy, and B. Bagchi,Journal of Photochemistry and Photobiology A: Chemistry, 2007. 190(2-3): p. 335.

    QR CODE