研究生: |
呂柏憲 Lu, Po-Hsien |
---|---|
論文名稱: |
應用磁性粒子與電磁驅動力於A型流感病毒偵測之自動化無結構式數位微流體平台 A Structure-free Digital Microfluidic Platform for Detection of Influenza A Virus by Using Magnetic Beads and Electromagnetic Forces |
指導教授: |
李國賓
Lee, Gwo-Bin |
口試委員: |
陳致真
Chen, Chih-Chen 王玉麟 Wang, Yu-Lin |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 數位液滴微流體 、A型流感 、H1N1 、酵素結合免疫吸附分析法 、適體 、磁珠 、電磁力 |
外文關鍵詞: | digital microfluidics, influenza A, H1N1, ELISA, aptamer, magnetic beads, electromagnetic force |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
H1N1為A型流感病毒的其中一種亞型,過去數十年來已成為一種具危害性的全球傳染性威脅。由於傳播速度極快,因此迫切需要開發精確且快速的檢測方法。本研究利用磁珠作為中繼點進行與單一適體以及兩種抗體進行類酵素結合免疫吸附分析法之檢測,並提出了一新型數位液滴微流體平台來對H1N1病毒進行檢測。在此平台上含有磁珠的液滴藉由電磁力驅動於無結構式的超疏水表面上。藉由不同層級的疏水性改質,液滴可以輕易地在此無阻力表面上進行控制以及定位而無須任何的物理性結構限制。作為驅動的電磁力可以針對三種液滴及磁珠的操作模式進行調整,包括移動含有磁珠的液滴、進行兩個液滴的混合以及從液滴中進行磁珠的萃取。與先前的數位微流體相比,此平台的磁通量可調性使得系統在液滴與磁性粒子的操控上擁有更高的靈活性。除此之外,磁珠也作為酵素結合免疫吸附分析法的媒介,透過與適體及抗體的連結以特異性來檢測H1N1病毒。而帶有HRP的二級抗體能夠活化酪胺分子使其不穩定,並且與周圍的蛋白質快速共價鍵結進行酪胺訊號放大技術。藉由此技術能夠將帶有螢光的酪胺分子濃縮聚集在目標分子附近提高檢測訊號且避免增加背景值。根據實驗,本研究之檢測濃度極限大約為0.032血球凝集力單位/反應,對於臨床診斷來說是足夠靈敏的,且整體檢測時間小於40分鐘。此應用類酵素結合免疫吸附分析法的數位液滴微流體平台以每顆液滴20 μL的有效反應體積有效降低H1N1病毒樣品和試劑(抗體、酪胺分子和洗滌緩衝液(去離子蒸餾水、磷酸鹽緩衝鹽水)的消耗。這是首次建立一個針對A型流感H1N1病毒檢測的電磁力驅動數位液滴微流體平台。
H1N1, a subtype of influenza A virus, has emerged as a global threat in the past decade. Due to its highly infectious nature, an accurate and rapid detection assay is urgently required. Therefore, this study presents a new type of digital microfluidic platform for H1N1 virus detection by utilizing a one-aptamer/two-antibodies assay and magnetic beads as the substrate. The droplets containing magnetic beads were driven by electromagnetic forces on a structure-free, super-hydrophobic surface to automate the entire assay. With different levels of hydrophobic modification, the droplets could be easily controlled and positioned without any assisted structure. The tunable electromagnetic forces could be adjusted for three kinds of operating modes for the manipulations of beads and droplets in a simple and automatic process. The manipulations include movement of droplets containing magnetic beads, mixing of two droplets and beads extraction out of droplets. When compared with previous studies, the manipulations of droplets and magnetic particles in this study are more flexible as they can be easily adjusted by tuning the magnetic flux density. Furthermore, the magnetic beads also served as a three-dimensional substrate for the new enzyme-linked immunosorbent assays (ELISA)-like assay. The magnetic beads were conjugated with aptamers, which have high specificity towards H1N1 virus such that they could be specifically isolated and detected. The horseradish peroxidase (HRP)-conjugated secondary antibody activates the tyramide-tetramethylrhod amine, a core type of the tyramide signal amplification (TSA) technology, and the activated tyramide becomes extremely unstable and rapidly covalently bonds with target proteins such that tyramide can be concentrated in the vicinity of the target molecule without any increase in background value. Therefore, a large amount of fluorescence signal will be displayed on the target molecule. The limit of detection (LOD) was experimentally found to be 0.032 hemagglutination units (HAU)/reaction within 40 min, which is sensitive enough for clinical diagnostics. This kind of digital microfluidic platform with ELISA-like assay could effectively decrease the consumption of samples and reagents such that the volume of all the droplets including H1N1 sample, antibodies, tyramide-tetramethylrhod amine and wash buffers (i.e. deionized distilled water and phosphate buffered saline) was only 20 μL. This is the first time that a digital microfluidic platform was demonstrated such that the entire diagnostic process for influenza H1N1 virus could be performed by using electromagnetic forces.
References
[1] L. Ferguson, A. K. Olivier, S. Genova, W. B. Epperson, D. R. Smith, L. Schneider, K. Barton, K. McCuan, R. J. Webby, and X. F. Wan, "Pathogenesis of influenza D virus in cattle," Journal of Virology, Article vol. 90, no. 12, pp. 5636-5642, 2016.
[2] H. Nair, W. A. Brooks, M. Katz, A. Roca, J. A. Berkley, S. A. Madhi, J. M. Simmerman, A. Gordon, M. Sato, S. Howie, A. Krishnan, M. Ope, K. A. Lindblade, P. Carosone-Link, M. Lucero, W. Ochieng, L. Kamimoto, E. Dueger, N. Bhat, S. Vong, E. Theodoratou, M. Chittaganpitch, O. Chimah, A. Balmaseda, P. Buchy, E. Harris, V. Evans, M. Katayose, B. Gaur, C. O'Callaghan-Gordo, D. Goswami, W. Arvelo, M. Venter, T. Briese, R. Tokarz, M. A. Widdowson, A. W. Mounts, R. F. Breiman, D. R. Feikin, K. P. Klugman, S. J. Olsen, B. D. Gessner, P. F. Wright, I. Rudan, S. Broor, E. A. F. Simoes, and H. Campbell, "Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis," Lancet, Review vol. 378, no. 9807, pp. 1917-1930, 2011.
[3] R. G. Webster and E. A. Govorkova, "Continuing challenges in influenza," in Antimicrobial Therapeutics Reviews: Infectious Diseases of Current and Emerging Concern, vol. 1323, K. Bush, Ed. Annals of the New York Academy of Sciences, Oxford: Blackwell Science Publ, pp. 115-139, 2014.
[4] S. V. Vemula, J. Q. Zhao, J. K. Liu, X. Wang, S. Biswas, and I. Hewlett, "Current approaches for diagnosis of influenza virus infections in humans," Viruses-Basel, Review vol. 8, no. 4, p. 15, Art. no. 96, 2016.
[5] W. R. Dowdle, J. C. Galphin, M. T. Coleman, and G. C. Schild, "Simple double immunodiffusion test for typing influenza-viruses," Bulletin of the World Health Organization, Article vol. 51, no. 3, pp. 213-218, 1974.
[6] C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D. Van Kerkhove, T. D. Hollingsworth, J. Griffin, R. F. Baggaley, H. E. Jenkins, E. J. Lyons, T. Jombart, W. R. Hinsley, N. C. Grassly, F. Balloux, A. C. Ghani, N. M. Ferguson, A. Rambaut, O. G. Pybus, H. Lopez-Gatell, C. M. Alpuche-Aranda, I. B. Chapela, E. P. Zavala, D. M. E. Guevara, F. Checchi, E. Garcia, S. Hugonnet, C. Roth, and W. H. O. R. P. A. Coll, "Pandemic potential of a strain of influenza a (H1N1): early findings," Science, Article vol. 324, no. 5934, pp. 1557-1561, 2009.
[7] E. Ghedin, N. A. Sengamalay, M. Shumway, J. Zaborsky, T. Feldblyum, V. Subbu, D. J. Spiro, J. Sitz, H. Koo, P. Bolotov, D. Dernovoy, T. Tatusova, Y. M. Bao, K. St George, J. Taylor, D. J. Lipman, C. M. Fraser, J. K. Taubenberger, and S. L. Salzberg, "Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution," Nature, Article vol. 437, no. 7062, pp. 1162-1166, 2005.
[8] G. J. D. Smith, D. Vijaykrishna, J. Bahl, S. J. Lycett, M. Worobey, O. G. Pybus, S. K. Ma, C. L. Cheung, J. Raghwani, S. Bhatt, J. S. M. Peiris, Y. Guan, and A. Rambaut, "Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic," Nature, Article vol. 459, no. 7250, pp. 1122-U107, 2009.
[9] G. Neumann, T. Noda, and Y. Kawaoka, "Emergence and pandemic potential of swine-origin H1N1 influenza virus,", Nature, Review vol. 459, no. 7249, pp. 931-939, 2009.
[10] H. A. Stone, A. D. Stroock, and A. Ajdari, "Engineering flows in small devices: Microfluidics toward a lab-on-a-chip," Annual Review of Fluid Mechanics, Review vol. 36, pp. 381-411, 2004.
[11] R. Sista, Z. S. Hua, P. Thwar, A. Sudarsan, V. Srinivasan, A. Eckhardt, M. Pollack, and V. Pamula, "Development of a digital microfluidic platform for point of care testing," Lab on a Chip, Article vol. 8, no. 12, pp. 2091-2104, 2008.
[12] P. S. Dittrich and A. Manz, "Lab-on-a-chip: microfluidics in drug discovery," Nature Reviews Drug Discovery, Review vol. 5, no. 3, pp. 210-218, 2006.
[13] C. D. Chin, V. Linder, and S. K. Sia, "Lab-on-a-chip devices for global health: Past studies and future opportunities," Lab on a Chip, vol. 7, no. 1, pp. 41-57, 2006.
[14] D. R. Reyes, D. Iossifidis, P. A. Auroux, and A. Manz, "Micro total analysis systems. 1. Introduction, theory, and technology," Analytical Chemistry, Review vol. 74, no. 12, pp. 2623-2636, 2002.
[15] P. A. Auroux, D. Iossifidis, D. R. Reyes, and A. Manz, "Micro total analysis systems. 2. Analytical standard operations and applications," Analytical Chemistry, Review vol. 74, no. 12, pp. 2637-2652, 2002.
[16] T. Vilkner, D. Janasek, and A. Manz, "Micro total analysis systems. Recent developments," Analytical Chemistry, Review vol. 76, no. 12, pp. 3373-3385, 2004.
[17] L. T. H. Kao, L. Shankar, T. G. Kang, G. J. Zhang, G. K. I. Tay, S. R. M. Rafei, and C. W. H. Lee, "Multiplexed detection and differentiation of the DNA strains for influenza A (H1N1 2009) using a silicon-based microfluidic system," Biosensors & Bioelectronics, Article vol. 26, no. 5, pp. 2006-2011, 2011.
[18] Y. T. Tseng, C. H. Wang, C. P. Chang, and G. B. Lee, "Integrated microfluidic system for rapid detection of influenza H1N1 virus using a sandwich-based aptamer assay," Biosensors & Bioelectronics, Article vol. 82, pp. 105-111, 2016.
[19] L. Y. Hung, T. B. Huang, Y. C. Tsai, C. S. Yeh, H. Y. Lei, and G. B. Lee, "A microfluidic immunomagnetic bead-based system for the rapid detection of influenza infections: from purified virus particles to clinical specimens," Biomedical Microdevices, Article vol. 15, no. 3, pp. 539-551, 2013.
[20] Y.-D. Ma, Y.-S. Chen, and G.-B. Lee, "An integrated self-driven microfluidic device for rapid detection of the influenza A (H1N1) virus by reverse transcription loop-mediated isothermal amplification," Sensors and Actuators B: Chemical, vol. 296, p. 126647, 2019.
[21] S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, "Droplet microfluidics," Lab on a Chip, 10.1039/B715524G vol. 8, no. 2, pp. 198-220, 2008.
[22] Y. Zhang and N. T. Nguyen, "Magnetic digital microfluidics - a review," Lab on a Chip, Review vol. 17, no. 6, pp. 994-1008, 2017.
[23] C. Sung Kwon, M. Hyejin, and K. Chang-Jin, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," Journal of Microelectromechanical Systems, vol. 12, no. 1, pp. 70-80, 2003.
[24] U. Lehmann, C. Vandevyver, V. K. Parashar, and M. A. M. Gijs, "Droplet-based DNA purification in a magnetic lab-on-a-chip," Angewandte Chemie International Edition, vol. 45, no. 19, pp. 3062-3067, 2006.
[25] Z. C. Long, A. M. Shetty, M. J. Solomon, and R. G. Larson, "Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface," Lab on a Chip, Article vol. 9, no. 11, pp. 1567-1575, 2009.
[26] W. Hang Koh, K. Seng Lok, and N.-T. Nguyen, "A digital micro magnetofluidic platform for lab-on-a-chip applications," Journal of Fluids Engineering, vol. 135, no. 2, pp. 021302-021302-6, 2013.
[27] Y. Zhao, Z. Xu, M. Parhizkar, J. Fang, X. Wang, and T. Lin, "Magnetic liquid marbles, their manipulation and application in optical probing," Microfluidics and Nanofluidics, journal article vol. 13, no. 4, pp. 555-564, 2012.
[28] K. S. Seo, R. Wi, S. G. Im, and D. H. Kim, "A superhydrophobic magnetic elastomer actuator for droplet motion control," Polymers for Advanced Technologies, vol. 24, no. 12, pp. 1075-1080, 2013.
[29] J. W. Choi, K. W. Oh, J. H. Thomas, W. R. Heineman, H. B. Halsall, J. H. Nevin, A. J. Helmicki, H. T. Henderson, and C. H. Ahn, "An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities," Lab on a Chip, Article vol. 2, no. 1, pp. 27-30, 2002.
[30] R. D. Oleschuk, L. L. Shultz-Lockyear, Y. B. Ning, and D. J. Harrison, "Trapping of bead-based reagents within microfluidic systems: On-chip solid-phase extraction and electrochromatography," Analytical Chemistry, Article vol. 72, no. 3, pp. 585-590, 2000.
[31] S. A. Soper, A. C. Henry, B. Vaidya, M. Galloway, M. Wabuyele, and R. L. McCarley, "Surface modification of polymer-based microfluidic devices," Analytica Chimica Acta, Article; Proceedings Paper vol. 470, no. 1, pp. 87-99, 2002.
[32] I. Wong and C. M. Ho, "Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices," Microfluidics and Nanofluidics, Review vol. 7, no. 3, pp. 291-306, 2009.
[33] F. Mumm, A. T. J. van Helvoort, and P. Sikorski, "Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems," ACS Nano, vol. 3, no. 9, pp. 2647-2652, 2009.
[34] Y. Zhang and T. H. Wang, "Full-range magnetic manipulation of droplets via surface energy traps enables complex bioassays," Advanced Materials, Article vol. 25, no. 21, pp. 2903-2908, 2013.
[35] L. C. Dong Jin Shin, Chenglong Li, A. Trick and T. H. Wang, "A mobile phone-operated nucleic acid diagnostic platform for detection of urinary tract infection (UTI) " Proceedings of microTAS, pp. 229-230, 2017.
[36] G. A. Diaz-Quijada and D. D. M. Wayner, "A simple approach to micropatterning and surface modification of poly(dimethylsiloxane)," Langmuir, Article vol. 20, no. 22, pp. 9607-9611, 2004.
[37] B. J. Hicke and A. W. Stephens, "Escort aptamers: a delivery service for diagnosis and therapy," Journal of Clinical Investigation, Article vol. 106, no. 8, pp. 923-928, 2000.
[38] X. H. Fang and W. H. Tan, "Aptamers generated from cell-selex for molecular medicine: a chemical biology approach," Accounts of Chemical Research, Review vol. 43, no. 1, pp. 48-57, 2010.
[39] A. D. Ellington and J. W. Szostak, "Invitro selection of rna molecules that bind specific ligands," Nature, Article vol. 346, no. 6287, pp. 818-822, 1990.
[40] V. Crivianu-Gaita and M. Thompson, "Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements," Biosensors & Bioelectronics, Review vol. 85, pp. 32-45, 2016.
[41] V. C. C. Cheng, K. K. W. To, H. Tse, I. F. N. Hung, and K. Y. Yuen, "Two years after pandemic influenza A/2009/H1N1: What have we learned?," Clinical Microbiology Reviews, Review vol. 25, no. 2, pp. 223-263, 2012.
[42] R. W. Y. Chan, M. C. W. Chan, J. M. Nicholls, and J. S. M. Peiris, "Use of ex vivo and in vitro cultures of the human respiratory tract to study the tropism and host responses of highly pathogenic avian influenza A (H5N1) and other influenza viruses," Virus Research, Article vol. 178, no. 1, pp. 133-145, 2013.
[43] E. D. Heegaard, B. L. Petersen, C. J. Heilmann, and A. Hornsleth, "Prevalence of parvovirus b19 and parvovirus v9 DNA and antibodies in paired bone marrow and serum samples from healthy individuals," Journal of Clinical Microbiology, vol. 40, no. 3, pp. 933-936, 2002.
[44] X. Cai, Z. Lei, W.-l. Fu, Z.-y. Zhu, M.-j. Zou, J. Gao, Y.-y. Wang, M. Hong, J.-x. Wang, and W.-j. Li, "Optimisation of reverse transcription loop-mediated isothermal amplification assay for the rapid detection of pandemic (H1N1) 2009 virus," African Journal of Microbiology Research, vol. 7, no. 30, pp. 3919-3925, 2013.
[45] D. E. Dwyer, D. W. Smith, M. G. Catton, and I. G. Barr, "Laboratory diagnosis of human seasonal and pandemic influenza virus infection," Medical Journal of Australia, Article vol. 185, no. 10, pp. S48-S53, 2006.
[46] D. A. Green and K. StGeorge, "Rapid antigen tests for influenza: rationale and significance of the FDA reclassification," Journal of Clinical Microbiology, vol. 56, no. 10, pp. e00711-18, 2018.
[47] C. H. Wang, C. P. Chang, and G. B. Lee, "Integrated microfluidic device using a single universal aptamer to detect multiple types of influenza viruses," Biosensors & Bioelectronics, Article vol. 86, pp. 247-254, 2016.
[48] M. D. Mavrouli, J. G. Routsias, H. C. Maltezou, N. Spanakis, and A. Tsakris, "Estimation of seroprevalence of the pandemic H1N1 2009 influenza virus using a novel virus-free elisa assay for the detection of specific antibodies," Viral Immunology, Article vol. 24, no. 3, pp. 221-226, 2011.
[49] H. J. Zheng, J. A. Fuhrman, M. Xu, W. F. Cheng, M. V. R. Reddy, and W. F. Piessens, "Comparison of dot-ELISA with sandwich ELISA in detecting circulating antigen in patients with bancroftian filariasis," Chinese Medical Journal, Article vol. 103, no. 9, pp. 709-712, 1990.
[50] H. T. Mohammad Reza Siavashi, Kiumarth Rezaei, Mohammad Reza Razavi Deligani and Mehdi Assmar, "Comparison of dot-ELISA and sandwich ELISA diagnostic tests in detection of human hydatidosis," Iranian Biomedical Journal, vol. 9, pp. 91-94, 2005.
[51] M. A. M. Gijs, "Magnetic bead handling on-chip: new opportunities for analytical applications," Microfluidics and Nanofluidics, Review vol. 1, no. 1, pp. 22-40, 2004.
[52] F. Lopez-Medrano, E. Cordero, J. Gavalda, J. M. Cruzado, M. A. Marcos, P. Perez-Romero, N. Sabe, M. A. Gomez-Bravo, J. F. Delgado, E. Cabral, J. Carratala, M. Spanish Soc Infect Dis Clinical, and R. E. I. Spanish Network Res Infect Dis, "Executive summary. Management of influenza infection in solid-organ transplant recipients: Consensus statement of the Group for the Study of Infection in Transplant Recipients (GESITRA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) and the Spanish Network for Research in Infectious Diseases (REIPI)," Enfermedades Infecciosas Y Microbiologia Clinica, Article vol. 31, no. 8, pp. 528-534, 2013.
[53] S. Carinelli, M. Marti, S. Alegret, and M. I. Pividori, "Biomarker detection of global infectious diseases based on magnetic particles," New Biotechnology, Article vol. 32, no. 5, pp. 521-532, 2015.
[54] K. Y. Lien, L. Y. Hung, T. B. Huang, Y. C. Tsai, H. Y. Lei, and G. B. Lee, "Rapid detection of influenza A virus infection utilizing an immunomagnetic bead-based microfluidic system," Biosensors & Bioelectronics, Article vol. 26, no. 9, pp. 3900-3907, 2011.
[55] W. C. Nelson and C. J. Kim, "Droplet actuation by electrowetting-on-dielectric (EWOD): A review," Journal of Adhesion Science and Technology, Review vol. 26, no. 12-17, pp. 1747-1771, 2012.
[56] D. J. Shin and T. H. Wang, "Magnetic droplet manipulation platforms for nucleic acid detection at the point of care," Annals of Biomedical Engineering, Article vol. 42, no. 11, pp. 2289-2302, 2014.
[57] Y. Zhang, S. Park, K. Liu, J. Tsuan, S. Yang, and T. H. Wang, "A surface topography assisted droplet manipulation platform for biomarker detection and pathogen identification," Lab on a Chip, Article vol. 11, no. 3, pp. 398-406, 2011.
[58] J. Zhou, M. R. Battig, and Y. Wang, "Aptamer-based molecular recognition for biosensor development," Analytical and Bioanalytical Chemistry, Review vol. 398, no. 6, pp. 2471-2480, 2010.
[59] A. C. Hurt, R. Alexander, J. Hibbert, N. Deed, and I. G. Barr, "Performance of six influenza rapid tests in detecting human influenza in clinical specimens," Journal of Clinical Virology, Article vol. 39, no. 2, pp. 132-135, 2007.
[60] C. Chartrand, M. M. G. Leeflang, J. Minion, T. Brewer, and M. Pai, "Accuracy of rapid influenza diagnostic tests: a meta-analysis," Annals of Internal Medicine, vol. 156, no. 7, pp. 500-511, 2012.
[61] Y. Sakai-Tagawa, M. Ozawa, S. Yamada, Y. Uchida, T. Saito, K. Takahashi, N. Sugaya, M. Tashiro, and Y. Kawaoka, "Detection sensitivity of influenza rapid diagnostic tests," Microbiology and Immunology, vol. 58, no. 10, pp. 600-606, 2014.