簡易檢索 / 詳目顯示

研究生: 彭博生
Bo-Sheng Peng
論文名稱: 在度量空間上,二個單值和多值的共同固定點定理
Common fixed points of two single-valued and two multi-valued maps on metric spaces
指導教授: 張東輝
Dong-Hui Chang
陳啟銘
Chi-Ming Chen
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2011
畢業學年度: 99
語文別: 英文
中文關鍵詞: 共同定點定理收縮映射
外文關鍵詞: contraction mapping, EA
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本文中,證明了在度量空間中,滿足收縮且包含EA屬性的條件下,二個單值和二個多值函數有共同固定點。


    The aim of this paper is to prove some common fixed point theorems for a hybird pair of single-valued and multivalued maps under hybird contractive conditions which contains the property (EA). Our results generalizes some recent results.

    1. Introduction and Preliminaries--------1 2. Main results--------------------------3 3. References----------------------------7

    [1] A. Aamri and D.El Moutawakil, Some new common fixed point theorems under strict contractive conditions, J. Math.Anal. Appl.,270 (2002), No.1, 181-188.
    [2] C.M. Chen, Fixed point theorems for the Φ-set contraction mapping on almost conves sets, NonlinearAnal.,71 (2009), 2600-2605.
    [3] Lj. B. Ciric and J.S. Ume, Multi-valued non-self-mappings on convex metric spaces, NonlinearAnal.,60 (2005), No.6, 1053-1063.
    [4] M. Frigon, Fixedpoint results for generalized contractions in gauge spaces and application, Proc.Amer. Math. Soc.,128 (2000), No.10, 2957-2965.
    [5] T. Hicks and B.E. Rhoades, Fixed points and continuity for multivalued mappings, Int. J. Math. Math. Sci.,15 (1992), No1. 15-30.
    [6] G. Jungckand B.E. Rhoades, Fixedpoints for setvalued functions without continuity, Indian J. Pure Appl. Math.,29 (1998), No.3, 227-238.
    [7] T. Kamran, Coincidence and fixed points for hybrid strict contractions J. Math.Anal. Appl.,299 (2004), No.1, 235-241.
    [8] Y. Liu,J. WuandZ.Li, Common fixed points of single-valued and multival¬ued maps on metric spaces Int. J. Math. Math. Sci.,19 (2005), 3045-3055.
    [9] B.E. Rhoades,Acomparison of various definitions of contractive mappings, Trans.Amer. Math. Soc.,266 (1977), 257-290.
    [10] T. Suzuki, Generalized Caristis fixed point theorems by Bae and others,
    J. Math.Anal. Appl.,302 (2005), No.2, 502-508.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE