簡易檢索 / 詳目顯示

研究生: 吳昇鴻
Wu, Sheng-Hung
論文名稱: 多輸入多輸出偵測器實作於多核心數位訊號處理器平台之設計與實作
Design and Implementation of MIMO Detectors on Multi-core DSP Platform
指導教授: 黃元豪
Huang, Yuan-Hao
口試委員: 蔡佩芸
陳喬恩
楊家驤
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 90
中文關鍵詞: 多輸入多輸出偵測器數位訊號處理器
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多輸入多輸出(MIMO)的無線通訊系統可以有效的改善資料的傳輸速度與傳輸品質,近年來已被廣泛的使用,許多通訊標準如制定中的WiMAX與3GPP-LTE都採納這項技術作為核心,而眾多的通訊標準所支援的天線數各有不同,從4x4, 8x8 到12x12都是可能的天線配置。在多輸入多輸出系統中,多輸入多輸出偵測器可以有效的解出傳輸天線的傳送訊號,此部分傳統的實作方法是以特定應用積體電路(ASIC)的方式來實現,此方式確實能達到非常好的效能,但缺點是缺乏彈性,一旦設計上需要作更改,就必須重新花費數個月的下線時間來產生新成品,在商業競爭下,可能會因此而喪失領先地位,因此,我們試圖使用可變式(configurable)平台來實作,快速地變更我們的偵測器設計,我們將採用德州儀器(Texas Instrument)推出的TMS320 C6678 DSP Platform,並且將三種多輸入多輸出偵測器演算法在不同的天線數和調變方法下實作於平台上。實作的結果將同時考慮錯誤率(BER, bit error rate)與傳輸速率(data rate),在4x4天線數下,MCS-QRSIC演算法為最佳演算法,而在8x8, 12x12天線數下,Distributed K-best為最佳演算法,唯有在16QAM時因為受到錯誤地板現象(error floor)的關係,反而以MCS-QRSIC為最佳。另外,針對MCS-QRSIC演算法的實作上,我們多加的一個機制可以有效的降低執行時間。而Sorting-Reduced K-best與錯誤率相當的Distributed K-best比較,能減少約9~17%的執行時間。與其他篇相關文獻比較,在假設平台擁有一樣多核心數的情況下,這件作品可以輸出較高的傳輸速率。


    1 Introduction 1 1.1 MIMO Systems 1.2 Research Motivation 1.3 Organization of This Thesis 2 MIMO Systems and Detection Algorithms 2.1 MIMO System Model 2.1.1 MIMO System Model 2.1.2 Channel Capacity 2.1.3 Diversity 2.2 MIMO Systems 2.2.1 Space Block Code 2.2.2 Spatial Multiplexing 2.3 MIMO Detection 2.3.1 Linear Detection 2.3.2 Non-linear Detection 2.4 QR Decomposition Algorithm 2.4.1 Gram-Schmidt Method 2.4.2 Householder Transform Method 2.4.3 Givens Rotation Method 3 Architecture of Multi-Core DSP Platform 3.1 Architecture Overview 3.2 Enhanced Direct Memory Access (EDMA) 3.2.1 DMA Channels 3.2.2 Transfer Example 3.2.3 Trigger Transfer Request 4 Implementation of MIMO Detection 4.1 Partition Algorithm 4.2 MIMO Detection Algorithm 4.2.1 Multiple Candidate Selection QRSIC 4.2.2 Partition of Multiple Candidate Selection QRSIC Detector 4.2.3 Distributed K-best Detector 4.2.4 Partition of Distributed K-best Detector 4.2.5 Sorting-Reduced K-best Detector 4.2.6 Partition of Sorting-Reduced K-best Detector 4.3 Implementation 4.3.1 Implementation Scenario 4.3.2 Implementation for MIMO Detection 5 Implementation Result 5.1 The Speed Up Factor for Multi-core Processing 5.2 MCS-QRSIC vs Distributed K-best vs Sorting-Reduced K-best 5.3 The Effect of Break Condition in MCS-QRSIC 5.4 Distributed K-best vs Sorting-Reduced K-best 5.5 Comparison with Other Literatures 6 Conclusion

    [1] P. L. Chiu and Y. H. Huang, “A scalable MIMO detection architecture with nonsorted
    multiple-candidate selection,” in Proc. of IEEE International Symposium on
    Circuits and Systems 2009 (ISCAS 2009), May 2009, pp. 689 –692.
    [2] X. Cao, “Local maximum likelihood detection method for MIMO systems,” in
    International Conference on Communications, Circuits and Systems 2005, vol. 1,
    May 2005, pp. 203 – 206 Vol. 1.
    [3] M. Shabany and P. Gulak, “Scalable VLSI architecture for K-best lattice decoders,”
    in IEEE International Symposium on Circuits and Systems 2008(ISCAS 2008),
    May 2008, pp. 940 –943.
    [4] Y. Wang and K. Roy, “A new reduced-complexity sphere decoder with true latticeboundary-
    awareness for multi-antenna systems,” in IEEE International Symposium
    on Circuits and Systems 2005(ISCAS 2005), May 2005, pp. 4963 – 4966 Vol. 5.
    [5] H. Y. Lin and G. G. Lee, “Quantifying intrinsic parallelism via eigen-decomposition
    of dataflow graphs for algorithm/architecture co-exploration,” in IEEE Workshop
    on Signal Processing Systems 2010(SIPS), Oct. 2010, pp. 317 –322.
    [6] G. G. Lee, H. Y. Lin, C. F. Chen, and T. Y. Huang, “Quantifying intrinsic parallelism
    using linear algebra for algorithm/architecture coexploration,” IEEE Transactions
    on Parallel and Distributed Systems, vol. 23, no. 5, pp. 944 –957, may 2012.
    [7] S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, and A. Vidal, “Fully parallel gpu
    implementation of a fixed-complexity soft-output mimo detector,” IEEE Transactions
    on Vehicular Technology, vol. PP, no. 99, p. 1, 2012.
    [8] M. Wu, Y. Sun, S. Gupta, and J. Cavallaro, “Implementation of a high throughput
    soft mimo detector on gpu,” Journal of Signal Processing Systems, vol. 64, no. 2,
    p. 123 V136, 2011.
    [9] D. Sui, Y. Li, J. Wang, P. Wang, and B. Zhou, “High throughput mimo-ofdm
    detection with graphics processing units,” in IEEE International Conference on
    Computer Science and Automation Engineering 2012(CSAE), vol. 2, May 2012,
    pp. 176 –179.
    [10] M.Wu, Y. Sun, and J. Cavallaro, “Reconfigurable real-time mimo detector on gpu,”
    in Conference Record of the Forty-Third Asilomar Conference on Signals, Systems
    and Computers 2009, Nov. 2009, pp. 690 –694.
    [11] J. G. Proakis, Digital Communications, 4th Edition, McGraw-Hill Publisher, 2001.
    [12] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading
    environment when using multiple antennas,” Wireless Personal Commun, vol. 6,
    pp. 311 –335, Mar. 1998.
    [13] S. Alamouti, “A simple transmit diversity technique for wireless communications,”
    IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451 –1458,
    Oct. 1998.
    [14] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-time block codes from orthogonal
    designs,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp.
    1456 –1467, Jul. 1999.
    [15] V. Tarokh, N. Seshadri, and A. Calderbank, “Space-time codes for high data
    rate wireless communication: performance criterion and code construction,” IEEE
    Transactions on Information Theory, vol. 44, no. 2, pp. 744 –765, Mar. 1998.
    [16] P.Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-blast: an architecture
    for realizing very high data rates over the rich-scattering wireless channel,” in URSI
    International Symposium on Signals, Systems, and Electronics 1998(ISSSE 1998),
    Sep. 1998, pp. 295 –300.
    [17] G. J. Foschini, “Layered space-time architecture for wireless communication in a
    fading environment when using multiple antennas,” Bell Laboratories Technical
    Journal, vol. 1, no. 2, pp. 41 –59, Autumn 1996.
    [18] C. K. Singh, S. H. Prasad, and P. T. Balsara, “A Fixed-Point Implementation
    for QR Decomposition,” in IEEE Dallas/CAS Workshop on Design, Applications,
    Integration and Software 2006, Oct. 2006, pp. 75 –78.
    [19] Y. Wang, J. Wang, and Z. Xie, “Parallel MIMO detection algorithm based on
    householder transformation,” in International Symposium on Intelligent Signal Processing
    and Communication Systems 2007(ISPACS 2007), Nov. 28 2007, pp. 180
    –183.
    [20] P. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50 Years of
    CORDIC: Algorithms, Architectures, and Applications,” IEEE Transactions on
    Circuits and Systems I: Regular Papers, vol. 56, no. 9, pp. 1893 –1907, 2009.
    [21] “[SPRS691B] TMS320C6678 Multicore Fixed and Floating-Point Digital Signal
    Processor Data Manual,” August 2011.
    [22] “[SPRABF2] Introduction to TMS320C6000 DSP Optimization,” October 2011.
    [23] “[SPRUGS5A] Enhanced Direct Memory Access (EDMA3) Controller User Guide,”
    December 2011.
    [24] M. Shabany and P. Gulak, “Scalable vlsi architecture for k-best lattice decoders,” in
    IEEE International Symposium on Circuits and Systems 2008(ISCAS 2008), May
    2008, pp. 940 –943.
    [25] S. Mondal, A. Eltawil, C.-A. Shen, and K. Salama, “Design and implementation
    of a sort-free k-best sphere decoder,” IEEE Transactions on Very Large Scale Integration
    (VLSI) Systems, vol. 18, no. 10, pp. 1497 –1501, Oct. 2010.
    [26] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,”
    IEEE Transactions on Information Theory, vol. 48, no. 8, pp. 2201 – 2214, Aug.
    2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE