研究生: |
楊明賢 Yang, Ming-Hsien |
---|---|
論文名稱: |
橫向高電壓4H-SiC雙漂移區圓形與線型金氧半場效電晶體設計與製作 The Design and Fabrication of Lateral High Voltage 4H-SiC Two-zone RESURF Circular and Linear MOSFETs |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 碳化矽 、雙漂移區 、金氧半場效電晶體 、高壓 、橫向 |
外文關鍵詞: | 4H-SiC, Two-zone, MOSFET, High voltage, Lateral |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳化矽因擁有高崩潰電場、高熱導係數與低導通電阻等特性,逐漸被應用於功率金氧半電晶體的研究上。
本論文研究中,我們製作出一個具有場平面保護、RESURF結構結合雙漂移區設計的4H-碳化矽金氧半電晶體於半絕緣基板上。雙漂移區結構設計是將靠近閘極端的漂移區摻雜濃度降低,降低閘極氧化層電場避免氧化層提早崩潰,靠近汲極端保持高摻雜濃度,如此便可使元件擁有較大的崩潰電壓而不犧牲導通電阻。半絕緣基板可避免傳統P型基板產生的基板輔助空乏效應。
與之前研究不同之處為離子佈植活化製程利用石墨披覆層保護避免高溫讓表面平整度變差。閘極氧化層長氧過後使用一氧化氮退火減少氧化層與碳化矽介面間缺陷避免庫倫散射導致遷移率變差。
實驗量測結果顯示,通道長度5μm漂移區80μm的元件崩潰電壓可達3500V,特徵導通電阻值為435 mΩ-cm2。閘極分為圓形與線型兩種設計,線型元件有較大的漏電流與缺陷陷捕效應,推測應為乾蝕刻造成隔離區邊緣上的缺陷所致。
Power MOSFETs in Silicon Carbide (SiC) have the potential of high breakdown, high temperature operation and low specific on-resistance due to its high avalanche breakdown field and large thermal conductivity.
In this thesis, we demonstrate a high-voltage lateral 4H-SiC MOSFET on a semi-insulating substrate with two-zone and field plate structures. Two RESURF zones with lower dose in zone1 close to the gate and higher dose in zone2 close to the drain can reduce the electric field near the gate oxide without increasing the specific on-resistance. Field plates are also employed at the gate and the drain to enhance the breakdown voltage. Semi-insulating substrates are used to avoid substrate assisted depletion effect and the vertical breakdown.
Different from our previous work, we successfully suppress the surface roughening by using a graphite cap during high-temperature activation. In addition, gate oxide annealed in NO ambient is used to passivate the interfaces at SiO2/4H-SiC after thermal oxidation.
From measurements, the best blocking voltage of 3500V with a specific on-resistance of 435 mΩ-cm2 is obtained on a device with Lch=5μm and Ld=80μm. Devices are fabricated with circular and linear gate, and the linear ones show worse trapping effects and larger leakage current. This might attribute to dry-etch induced defects on the sidewalls of the isolation trench.
[1] H. S. Lee, ”High Power Bipolar Junction Transistors in Silicon Carbide,” ISRN KTH/EKT/FR-2005/6-SE.
[2] C. M. Zetterling, “Process Technology for Silicon Carbide Devices,” The Institution of Electrical Engineers, 2002.
[3] A. K. Agarwal, J. B. Casady, L. B. Rowland, “1.1 kV 4H-SiC Power UMOSFET’s,” IEEE Electron Device Letters, VOL. 18, NO. 12, DECEMBER 1997.
[4] Y. Sugawara and K. Asano, “1.4kV 413-Sic UMOSFET with Low Specific On- Resistance,” Proceedings of 1998 International Symposium on Power Semiconductor Devices & ICs, Kyoto.
[5] L. Chen, O. J. Guy, M. R. Jennings, S. P. Wilks and P. A. Mawby, “Simulation Study of 1.2kV 4H-SiC DIMOSFET Stuctures,” IEEE, 2004.
[6] S. Harada, M. Kato, M. Okamoto, T. Yatsuo, K. Fukuda and K. Arai, “4.3mΩcm2, 1100V 4H-SiC Implantation and Epitaxial MOSFET,” Mateials Science Forum Vols. 527-529, pp 1281-1284, 2006.
[7] S. Harada, M. Kato, K. Suzuki, M. Okamoto, T. Yatsuo, K. Fukuda, K. Arai, “1.8 mΩcm2, 10A Power MOSFET in 4H-SiC,” IEEE Electron Device Letters, Vol. 25, p. 292, 2004
[8] K. Shenai, R. S. Scott, and B. J. Baliga, “Optimum Semiconductors for High-Power Electronics,” IEEE Trans. Electron Device, vol. 36, pp. 1811, 1989.
[9] J. A. Appels and H. M. J. Vas, “HIGH VOLTAGE THIN LAYER DEVICES (RESURF DEVICES),” IEDM Tech. Dig., pp. 238, 1979.
[10] J. Spitz , M. R. Melloch , J. A. Cooper, Jr. and M. A. Capano, ”2.6kV 4H-SiC Lateral DMOSFET’s,” IEEE Electron Device Letters, vol. 19, pp. 100-102, 1998.
[11] K. Chatty, S. Banerjee, T. P. Chow, and R. J. Gutmann, ”High-Voltage Lateral RESURF MOSFETs on 4H-SiC,” IEEE Electron Device Letters, vol. 21, pp. 356-358, 2000.
[12] S. Banerjee, K. Chatty, T. P Chow and R. J. Gutmann, ”Improved High-Voltage Lateral RESURF MOSFETs in 4H-SiC,” IEEE Electron Device Letters, vol. 22, pp. 209-211, 2001.
[13] S. Banerjee, T. P. Chow, and R. J. Gutmann, ”Robust, 1000 V, 130 mΩcm2, Lateral, Tow-Zone RESURF MOSFET’s in 6H–SiC,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp.69-72, 2002.
[14] T. Kimoto, H. Kawano and J. Suda, “1200V-Class 4H-SiC RESURF MOSFETs with Low On-Resistances,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, 2005.
[15] T. Kimoto, H. Kawano, and J. Suda, “1330V, 67 mΩ-cm2 4H-SiC(0001) RESURF MOSFET,” IEEE Electron Device Letters, vol. 29, pp. 649-651, 2005.
[16] V. Khemka, V. Parthasarathy, R. Zhu and A. Bose, “A Floating RESURF (FRESURF) LD-MOSFET Device Concept,” IEEE Electron Device Letters, Vol. 24, No. 10, 2003
[17] J. Cheng, Bo Zhang and Z. Li, “A Novel 1200-V LDMOSFET With Floating Buried Layer in Substrate,” IEEE Electron Device Letters, Vol. 29, No. 6, 2008
[18] H. Yano, T. Kimoto, and H. Matsunami, “Shallow States at SiO2/4H-SiC interface on (112-0) and (0001) faces,”Applied Physics Letters, Vol. 81, No. 2, 2002.
[19] S. Harada, R. Kosugi, J. Senzaki, Won-Ju Cho, K. Fukuda and K. Arai, “Relationship between channel mobility and interface state density in SiC metal–oxide–semiconductor field-effect transistor,” Journal of Applied Physics, Vol. 91, No 3, 2002.
[20] T. Hirao, H. Yano, T. Kimoto, H. Matsunami and H. Shiomi, “4H-SiC MOSFETs on (033-8) Face,” Material Science Forum,Vol.389-393, pp 1165-1068, 2002.
[21] H. Yano, T. Hirao, T. Kimoto and H. Matsunami , “High Channel Mobility in Inversion Layer of SiC MOSFETs for Power Switching Transistors,” Journal of Appplied Physics, 39 (2000) pp. 2008-2011
[22] C. Blanc, D. Tournier, P. Godignon, D.J. Brink, V. Souli□re, J. Camassel, “Process Optimisation for <11-20> 4H-SiC MOSFET Applications,” Materials Science Forum, Vol, 527-529, pp. 1051-1054, 2006.
[23] M. Okamoto, S. Suzuki, M. Kato, T. Yatsuo, and K. Fukuda , “Lateral RESURF MOSFET Fabricated,” IEEE Electron Device Letters, VOL. 25, NO. 6, JUNE 2004
[24] G. Y. Chung, C. C. Tin, J. R. Williams, K. McDonald, R. K. Chanana, Robert A. Weller, S. T. Pantelides, Leonard C. Feldman, O.W. Holland, M. K. Das, and JohnW. Palmour, “Improved Inversion Channel Mobility for 4H-SiC MOSFETs Following High Temperature Anneals in Nitric Oxide,” IEEE Electron Device Letters, VOL. 22, NO. 4, APRIL 2001.
[25] K. Fukuda, J. Senzaki, K. Kojima and T. Suzuki, “High Inversion Channel Mobility of MOSFET fabricated on 4H-SiC C(000-,1) Face Using H2 Post Oxidation Annealing,” Materials Science Forum, Vol. 433-436, pp. 567-570, 2003.
[26] Y. Kanzaki, H. Kinbara, H. Kosugi, J. Suda, T. Kimoto and H. Matsunami, “High Channek Mobilities of MOSFETs on highly-doped 4H-SiC(11-20) face by oxidation in N2O ambient,” Material Science Forum, Vol. 457-460, pp. 1429-1432, 2004.
[27] M. Noborio, J. Suda, and T. Kimoto,”Dose Designing and Fabrication of 4H-SiC Double RESURF MOSFETs,” Proceedings of the 18th International Symposium on Power Semiconductor Devices &IC’s, 2006.
[28] M. Noborio, J. Suda, and T. Kimoto,” 4H-SiC Double RESURF MOSFETs with a Record Performance by Increasing RESURF Dose,” Proceedings of the 20th International Symposium on Power Semiconductor Devices &IC’s, 2008
[29] S. Suzuki, S. Harada, T. Yatsuo, R. Kosugi, J. Senzaki, K. Fukuda,” 4H-SiC Lateral RESURF MOSFET with a Buried Channel Structure,”Material Science Forum, Vol. 433-436, pp 753-756,2003.
[30] K. Ueno and T. Olikawa, ”Counter-Doped MOSFET’s of 4H-SiC,” IEEE Electron Device Letters, Vol. 20, No. 12 , 1999.
[31] K.A. Jones, P.B. Shah, K.W. Kirchner, R.T. Lareau, M.C. Wood, M.H. Ervin, R.D. Vispute, R.P. Sharma, T. Venkatesan, O.W. Holland, ” Annealing ion implanted SiC with an AlN cap” Materials Science and Engineering B61–62 (1999) 281–286
[32] Y. Negoro, K. Katsumoto, T. Kimoto, and Matsunami, ”Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC(0001)“
Journal of Applied Physics,Vol.96, No.1, 2004.
[33] S.E. Saddow, J. Williams, T. Isaacs-Smith, M.A. Capano, J.A. Cooper, M.S. Mazzola, A.J. Hsieh and J.B. Casady, ”High Temperature Implant Activation in 4H and 6H-SiC in a Silane Ambient to Reduce Step Bunching,” Material Science Forum, Vol. 338-342(2000), pp 901-904
[34] J. Senzaki, S. Harada, R. Kosugi, S. Suzuki, K. Fukuda and K. Arai, “Improvements in Electrical Properties of n-Type-Implanted 4H-SiC Substrates Using High-Temperature Rapid Thermal Annealing,”Material Science Forum, Vol. 389-393(2002) pp 795-798.
[35] M.A. CAPANO, R. SANTHAKUMAR, R. VENUGOPAL, M.R. MELLOCH, and J.A. COOPER, Jr., “Phosphorus Implantation into 4H-Silicon Carbide,” Journal of Electrionic Material, Vol. 29, No.2, 2000.
[36] M. A. Capano, S. Ryu, J. A. Cooper, Jr., M. R. Melloch, K. Rottner, S. Karlsson, N. Nordell, A. Powell, and D. E. Walker, Jr., J. Electron. Mater. 28, 214, (1999).
[37] Y. Song, S. Dhar, and L. C. Feldman, G. Chung, J. R. Williams, “Modified Deal Grove model for the thermal oxidation of silicon carbide,” Journal of Applied Physics, Volume 95, Number 9, 2004.
[38] B. Jayant Baliga, “Power Semiconductor devices,” 1995.
[39] F. Moscatelli, A. Poggi, S. Solmi, and R. Nipoti, “Nitrogen Implantation to Improve Electron Channel Mobility in 4H-SiC MOSFET,” IEEE Transactions on Electron Devices, Vol. 55, No.4 , April 2008.
[40] A. J. Lelis, D. Habersat , R. Green1, and N. Goldsman, “Temperature-Dependence of SiC MOSFET Threshold-Voltage Instability,” Materials Science Forum, Vols. 600-603 (2009) pp 807-810.