研究生: |
謝欣達 |
---|---|
論文名稱: |
基於粒子群演算法之五軸側銑路徑規劃 Tool Path Planning for 5-Axis Flank Milling Based on Particle Swarm Optimization |
指導教授: | 瞿志行 |
口試委員: |
丁慶榮
陳湘鳳 周碩彥 林棋瑋 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 五軸加工 、刀具路徑規劃 、電腦輔助製造 、粒子群演算法 、側銑加工 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來五軸側銑被廣泛應用於複雜曲面的加工,包括汽車、航太、模具與能源等產業。由於額外的刀具旋轉自由度,五軸側銑提供較佳的成型能力與材料移除率,然而其刀具路徑規劃複雜度高,電腦輔助製造軟體的支援不足,仍無法有效控制加工曲面的誤差。此路徑規劃可轉換為數學規劃問題,運用全域最佳化演算法求解,藉此降低曲面的加工誤差。轉換後的問題具有高維度、高度非線性的特性,求解過程的計算效率,或收斂解的品質均不佳。有鑑於此,本研究基於粒子群最佳化演算法,針對直紋曲面的五軸側銑,發展進階式刀具路徑規劃方法,除了改善上述的問題,亦將利用演化計算的優勢,進行路徑規劃方式的創新。研究目的包括了改良刀具運動模式、增加計算效率、提升最佳化路徑品質與結合先進差補技術,分別完成「往復式刀具路徑產生」、「多重路徑規劃」、「結合電腦繪圖晶片」、「擴大刀具運動範圍」、「使用改良式粒子群演算法」與「基於類曲線插補之路徑規劃」等具體工作。根據不同曲面產生的刀具路徑,進行實際切削加工、量測與模擬,測試結果驗證了提出方法的效能。本研究兼具學理創新與應用價值,充分發揮基於全域最佳化之五軸側銑路徑規劃的優勢,不僅有效控制加工曲面的誤差,亦提供新穎的路徑規劃模式,提升複雜幾何的製造技術水準。
[1] C. H. Chu and J. T. Chen (2006) “Tool Path Planning for 5-Axis Flank Milling with Developable Surface Approximation,” International Journal of Advanced Manufacturing Technology, Vol. 29, No. 7-8, pp. 707-713.
[2] A. Larue and Y. Altintas (2005) “Simulation of Flank Milling Processes,” International Journal of Machine Tools and Manufacture, Vol. 45, pp. 549-559.
[3] A. Larue and B. Anselmetti (2003) “Deviation of a Machined Surface in Flank Milling,” International Journal of Machine Tools & Manufacture, Vol. 43, pp. 129-138.
[4] W. Ferry and Y. Altintas (2008) “Virtual Five-Axis Flank Milling of Jet Engine Impellers - Part I: Mechanics of Five-Axis Flank Milling,” Journal of Manufacturing Science and Engineering, Vol. 130, pp. 1-11.
[5] Y. Landon, S. Segonds, P. Lascoumes, and P. Lagarrigue (2004) “Tool Positioning Error (TPE) Characterisation in Milling,” International Journal of Machine Tools & Manufacture, Vol. 44, pp. 457-464.
[6] K. Sonthipermpoon, E. Bohez, H. Hasemann, and M. Rautenberg (2010) “The Vibration Behavior of Impeller Blades in the Five-Axis CNC Flank Milling Process,” International Journal of Advanced Manufacturing Technology, Vol. 46, pp 1171-1177.
[7] T. S. Lima, C. M. Leea, S. W. Kima, and D. W. Leeb (2001) “Evaluation of Cutter Orientations in 5-Axis High Speed Milling of Turbine Blade,” Journal of Materials Processing Technology, Vol. 130-131, pp. 401-406.
[8] J. Kopac and P. Krajnik (2007) “Robust Design of Flank Milling Parameters Based on Grey-Taguchi Method,” Journal of Materials Processing Technology, Vol. 191, pp. 400-403.
[9] E. L. J. Bohez, S. D. R. Senadhera, K. Pole, J. R. Duflou, and T. Tar (1997) “A Geometric Modeling and Five-Axis Machining Algorithm for Centrifugal Impellers,” Journal of Manufacturing Systems, Vol. 16, No. 6, pp.422-436.
[10] X. W. Liu (1995) “Five-Axis NC Cylindrical Milling of Sculptured Surfaces,” Computer-Aided Design, Vol. 27, No. 12, pp. 887-894.
[11] H. Gong, L. X. Cao, and J. Liu (2008) “Second Order Approximation of Tool Envelope Surface for 5-axis Machining with Single Point Contact,” Computer-Aided Design, Vol. 40, pp. 604-615.
[12] D. M. Tsay and M. J. Her (2001) “Accurate 5-Axis Machining of Twisted Ruled Surfaces,” ASME Journal of Manufacturing Science and Engineering, Vol. 123, pp. 731-738.
[13] S. Bedi, S. Mann, and C. Menzel (2003) “Flank Milling with Flat End Milling Cutters,” Computer Aided Design, Vol. 35, pp. 293-300.
[14] C. Menzel, S. Bedi, and S. Mann (2004) “Triple Tangent Flank Milling of Ruled Surfaces,” Computer-Aided Design, Vol. 36, pp. 289-296.
[15] C. Li, S. Bedi, and S. Mann (2006) “Flank Milling of a Ruled Surface with Conical Tools - an Optimization Approach,” International Journal of Advanced Manufacturing Technology, Vol. 29, pp. 1115-1124.
[16] J. J. Lee and S. H. Suh (1998) “Interference-Free Tool-Path Planning for Flank Milling of Twisted Ruled Surfaces,” International Journal of Advanced Manufacturing Technology, Vol. 14, pp. 795-805.
[17] J. Senatore, F. Monies, and J. Redonnet, W. Rubio (2005) “Analysis of Improved Positioning in Five-Axis Ruled Surface Milling Using Envelope Surface,” Computer-Aided Design, Vol. 37, pp. 989-998.
[18] J. Senatore, Y. Landon, and W. Rubio (2008) “Analytical Estimation of Error in Flank Milling of Ruled Surfaces,” Computer-Aided Design, Vol. 40, pp. 595-603.
[19] Y. Ding, L. M. Zhu, and H. Ding (2007) “Semidefinite Programming for Chebyshev Fitting of Spatial Straight Line with Applications to Cutter Location Planning and Tolerance Evaluation,” Precision Engineering, Vol. 31, pp. 364-368.
[20] P. H. Wu, Y. W. Li, and C. H. Chu (2008) “Optimized Tool Path Generation in 5-Axis Flank Milling using Dynamic Programming,” International Journal of Machine Tools and Manufacture,” International Journal of Machine Tools and Manufacture, Vol. 48, pp. 914-921.
[21] C. H. Chu, C. T. Lee, K. W. Tien, and C. J. Ting (2010) “Efficient Tool Path Planning for 5-Axis Flank Milling of Ruled Surfaces Using Ant Colony System Algorithms,” International Journal of Production Research, Vol. 49, No. 6, pp. 1557–1574.
[22] L. M. Zhu, G. Zheng, H. Ding, and Y. L. Xiong (2010) “Global Optimization of Tool Path for Five-Axis Flank Milling with a Conical Cutter,” Computer-Aided Design, Vol. 42, pp. 903-910.
[23] K. H. Chen (2011) “Investigation of Tool Orientation for Milling Blade of Impeller in Five-Axis Machining,” International Journal of Advanced Manufacturing Technology, Vol. 52, pp. 235-244.
[24] H. Gong and N. Wang (2009) “Analytical Calculation of the Envelope Surface for Generic Milling Tools Directly from CL-data Based on the Moving Frame Method,” Computer-Aided Design, Vol. 41,pp. 848-855.
[25] Q. Z. Bi, L. M. Zhu, Y. H. Wang, and H. Ding (2010) “Analytical Envelope Surface Representation of a Conical Cutter Undergoing Rational Notion,” International Journal of Advanced Manufacturing Technology, Vol. 47, pp. 719-730
[26] P. Pechard, C. Tournier, C. Lartigue, and J. Lugarini (2009) “Geometrical Deviations Versus Smoothness in 5-axis High-speed Flank Milling,” International Journal of Machine Tools & Manufacture, Vol. 49, pp. 454-461
[27] J. Kennedy and R. C. Eberhart (1995) “Particle Swarm Optimization,” In Proceedings of IEEE International Conference on Neural Networks, Vol, 4, pp. 1942–1948.
[28] A. Jalilvand, A. Kimiyaghalam, A. Ashouri, and M. Mahdavi (2008) “Advanced Particle Swarm Optimization-Based PID Controller Parameters Tuning,” IEEE International Multitopic Conference, December 23-24, pp. 429-435.
[29] J. Kennedy and J. Neves (2004) “The Fully Informed Particle Swarm: Simpler, Maybe Better,” IEEE Transactions of Evolutionary Computation, Vol. 8, No. 3, pp. 204-210.
[30] P. Besl and N. McKay (1992), “A method for registration of 3-D shapes,” IEEE trans. Pattern Analysis and Machine Intelligence, Vol. 14, pp. 239-256.