研究生: |
羅勝翰 Lo, Sheng-Han |
---|---|
論文名稱: |
中孔洞鋁金屬有機骨架之結構轉換與超疏水修飾研究 The Structural Transformation and Superhydrophobic Modification of Mesoporous Aluminum Metal-Organic Frameworks |
指導教授: |
王素蘭
Wang, Sue-Lein |
口試委員: |
呂光烈
Lu, Kuang-Lieh 林嘉和 Lin, Chia-Her 黃暄益 Huang, Hsuan-Yi 柯寶燦 Ko, Bao-Tsan |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 311 |
中文關鍵詞: | 鋁金屬有機骨架 、結構轉換 、超疏水修飾 、溶劑脫附 、高結晶性 、水/油分離 |
外文關鍵詞: | Aluminum Metal-Organic Frameworks, Structural Transformation, Superhydrophobic Modification, Desolvation, highly crystalline, water/oil separation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
孔洞性金屬有機骨架(Metal−Organic Frameworks, MOF)的動態性與柔性是其主體骨架之一大特徵。本研究藉由溶劑脫附且適當溫度與程序下,來轉換化學鍵並變化了金屬與配位基環境,展現了MOF巨大的結構轉變與功能性變化。
第一部分研究中,提出了一個特殊的MOF晶格重排系統,在溫和條件下,通過鍵連接的變動,可以實現MOF整體晶格的快速重排。該系統在溶劑交換與脫附後約40秒內,結構從低孔隙率與多缺陷的MOF轉變為多孔隙率與高結晶性的異構體,比表面積顯著從725增加至2,749 m2/g。藉由光譜測量結果表示,此MOF晶格重排系統涉及到亞穩中間體生成,其原因為溶劑去除後產生配位不飽和金屬位點,此兩種不同MOF拓撲結構(非晶性-結晶性)之間的轉換,可以通過活化與再浸潤極性溶劑中完成循環以及可逆的結構轉變。
有策略的設計出結合表面超疏水特性、高比表面積與中孔洞,以及優異穩定性的MOF材料是合成化學非常具有挑戰性的研究方向。在第二研究部分中,通過疏水分子(十八烯)選擇性修飾在MOF表面上,且內部結構發生晶格重排的方式,成功的合成出同時擁有超疏水與高比表面積的鋁中孔洞MOF。研究結果顯示,通過『速配接合反應』後修飾方式,將疏水性烷基鏈以共價鍵形式修飾於低孔隙率與多缺陷AlTz-53的表面,隨後,進行溶劑脫附處理,觸發內部結構的晶格重排,最後,內部孔隙率與材料結晶度都有顯著的提升。利用十八烯修飾使AlTz-68表面官能化產生超疏水特性(AlTz-68-C18),其水滴接觸角為173.6°。AlTz-68-C18也展現出目前文獻有關超疏水議題報導中擁有最大比表面積(2474 m2/g)的材料。另外,在潮濕條件下半年後仍然保持良好的孔隙率以及結構穩定性。此外,AlTz-68-C18與美耐皿海綿可進一步化學鍵結形成複合超疏水材料(AlTz-68-C18@sponge),也展現出優異的水/油分離效用。
Topological transitions between significantly different phases typically require extreme conditions to collectively break chemical bonds and overcome the stress caused to the original structure by altering its correlated bond environment. In this work, we present a case system that can achieve rapid rearrangement of the whole lattice of a metal–organic framework through a ‘domino’ alteration of the bond connectivity under mild conditions. The system transforms from a disordered amorphous MOF with low porosity to a highly porous and crystalline isomer within 40 seconds upon activation (solvent exchange and desorption), resulting in a significant increase in surface area, from 725 to 2,749 m2/g. Spectroscopic measurements show that this counter-intuitive lattice rearrangement involves a metastable intermediate that results from solvent removal on coordinatively unsaturated metal sites. This amorphous–crystalline switch between two topological distinct MOFs is shown to be reversible over two cycles through activation and re-immersion in polar solvents.
Designing materials that combine surface superhydrophobicity, large surface areas, large and uniform pore sizes as well as excellent stability is a very challenging area for synthetic chemists. In the second system, we demonstrate an effective strategy to construct superhydrophobic mesoporous MOF systems by selectively modifying the external surface of an internal lattice rearranged mesoporous MOF. The surface of defective AlTz-53 with limited porosity is initially modified by hydrophobic alkyl chains through click reactions. Subsequently, the internal framework undergoes lattice rearrangement upon solvent desolvation, leading to a significantly improved internal porosity and material crystallinity. Functionalizing the surface of AlTz-68 with octadecene (AlTz-68-C18) induced superhydrophobicity with a water contact angle of 173.6⁰. AlTz-68-C18 also exhibited the largest BET surface area (2474 m2/g) of all reported superhydrophobic framework materials. A high BET surface area paired with a contact angle of 173.6⁰ yields the superhydrophobic mesoporous AlTz-68-C18 which displays enhanced stability as well as preserved porosity toward moist conditions. Furthermore, the AlTz-68-C18@sponge composite composed of AlTz-68-C18 and sponge exhibits excellent performance towards water/oil separation.
第一章:
[1] S. Kitagawa, R. Kitaura and S. Noro, Functional Porous Coordination Polymers. Angew. Chem., Int. Ed., 2004, 43, 2334–2375.
[2] A. G. Slater, A. I. Cooper, Function−Led Design of New Porous Materials. Science, 2015, 348, 988–993.
[3] D. Maspoch, D. Ruiz-Molina and J. Veciana, Old Materials with New Tricks: Multifunctional Open−Framework Materials. Chem. Soc. Rev., 2007, 36, 770–818.
[4] A. F. Cronstedt, Akad handl. Stockholm, 1756, 17, 120.
[5] S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan and E. M. Flanigen, Aluminophosphate Molecular Sieves: A New Class of Microporous Crystalline Inorganic Solids. J. Am. Chem. Soc., 1982, 104, 1146–1147.
[6] S. M. Kuznicki, V. A. Bell, S. Nair, H. W. Hillhouse, R. M. Jacubinas, C. M. Braunbarth, B. H. Toby and M. Tsapatsis, A Titanosilicatemolecular Sieve with Adjustable Pores for Size-Selective Adsorption of Molecules. Nature, 2001, 412, 720–724.
[7] J. M. Thomas, R. Raja, G. Sankar and R. G. Bell, Molecular–Sieve Catalysts for the Selective Oxidation of Linear Alkanes by Molecular Oxygen. Nature, 1999, 398, 227–230.
[8] C.-H. Lin, S.-L. Wang and K.-H. Lii, [Ga2(DETA)(PO4)2]•2H2O (DETA ) Diethylenetriamine): A Novel Porous Gallium Phosphate Containing 24-Ring Channels. J. Am. Chem. Soc., 2001, 123, 4649–4650.
[9] Y.-L. Lai, K.-H. Lii and S.-L. Wang, 26-Ring−Channel Structure Constructed from Bimetal Phosphite Helical Chains. J. Am. Chem. Soc., 2007, 129, 5350–5351.
[10] X. Zou, T. Conradsson, M. Klingstedt, M. S. Dadachov and M. O’Keeffe, A Mesoporous Germanium Oxide with Crystalline Pore Walls and Its Chiral Derivative. Nature, 2005, 437, 716–719.
[11] N. Guillou, Q. Gao, P. M. Forster, J.-S. Chang, M. Noguès, S.-E. Park, G. Feréy and A. K. Cheetham, Nickel(II) Phosphate VSB-5: A Magnetic Nanoporous Hydrogenation Catalyst with 24-Ring Tunnels. Angew. Chem. Int. Ed., 2001, 40, 2831–2834.
[12] W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle III, M. Bosch and H.-C. Zhou, Tuning the Structure and Function of Metal–Organic Frameworks via Linker Design. Chem. Soc. Rev., 2014, 43, 5561–5593.
[13] J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen and J. T. Hupp, Metal–Organic Framework Materials as Catalysts. Chem. Soc. Rev., 2009, 38, 1450–1459.
[14] P. Falcaro, R. Ricco, C. M. Doherty, K. Liang, A. J. Hillb and M. J. Styles, MOF Positioning Technology and Device Fabrication. Chem. Soc. Rev., 2014, 43, 5513–5560.
[15] Z. Wang and S. M. Cohen, Postsynthetic Modification of Metal–Organic Frameworks. Chem. Soc. Rev., 2009, 38, 1315–1329.
[16] S. M. Cohen, Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks. Chem. Rev., 2012, 112, 970–1000.
[17] H. Furukawa, K. E. Cordova, M. O’Keeffe and O. M. Yaghi, The Chemistry and Applications of Metal−Organic Frameworks. Science, 2013, 341, 974–988.
[18] L. Chen, R. Luque and Y. Li, Controllable Design of Tunable Nanostructures inside Metal–Organic Frameworks. Chem. Soc. Rev., 2017, 46, 4614–4630.
[19] S. S. Han, J. L. Mendoza-Cortés and W. A. Goddard III, Recent Advances on Simulation and Theory of Hydrogen Storage in Metal–Organic Frameworks and Covalent Organic Frameworks. Chem. Soc. Rev., 2009, 38, 1460–1476.
[20] J.-R. Li, R. J. Kuppler and H.-C. Zhou, Selective Gas Adsorption and Separation in Metal–Organic Frameworks. Chem. Soc. Rev., 2009, 38, 1477–1504.
[21] L. J. Murray, M. Dincă and J. R. Long, Hydrogen Storage in Metal–Organic Frameworks. Chem. Soc. Rev., 2009, 38, 1294–1314.
[22] H.-Y. Lin, C.-Y. Chin, H.-L. Huang, W.-Y. Huang, M.-J. Sie, L.-H. Huang, Y.-H. Lee, C.-H. Lin, K.-H. Lii, X. Bu and S.-L. Wang, Crystalline Inorganic Frameworks with 56-Ring, 64-Ring, and 72-Ring Channels. Science, 2013, 339, 811–813.
[23] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe and O. M. Yaghi, Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science, 2002, 295, 469–472.
[24] O. K. Farha and J. T. Hupp, Rational Design, Synthesis, Purification, and Activation of Metal−Organic Framework Materials. Acc. Chem. Res. 2010, 43, 1166–1175.
[25] S. Horike, S. Shimomura and S. Kitagawa, Soft Porous Crystals. Nature Chem., 2009, 1, 695–704.
[26] H. Li, M. Eddaoudi, M. O’Keeffe and O. M. Yaghi, Design and Synthesis of an Exceptionally Stable and Highly Porous Metal-Organic Framework. Nature, 1999, 402, 276–279.
[27] C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk and G. Férey, Role of Solvent−Host Interactions that Lead to Very Large Swelling of Hybrid Frameworks. Science, 2007, 315, 1828–1831.
[28] C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër and G. Férey, Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)•{O2C-C6H4-CO2}•{HO2C-C6H4-CO2H}x•H2Oy. J. Am. Chem. Soc., 2002, 124, 13519–13526.
[29] J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, P. L. Llewellyn, N. Masciocchi and J. R. Long, Methane Storage in Flexible Metal–Organic Frameworks with Intrinsic Thermal Management. Nature, 2015, 527, 357–372.
[30] A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel and R. A. Fischer, Flexible Metal–Organic Frameworks. Chem. Soc. Rev., 2014, 43, 6062–6096.
[31] S. Yuan, L. Zou, H. Li, Y.-P. Chen, J. Qin, Q. Zhang, W. Lu, M. B. Hall and H.-C. Zhou, Flexible Zirconium Metal−Organic Frameworks as Bioinspired Switchable Catalysts. Angew. Chem. Int. Ed., 2016, 55, 10776–10780.
[32] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille and G. Férey, A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chem. Eur. J., 2004, 10, 1373–1382.
[33] S. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake and M. Schröder, A Partially Interpenetrated Metal–Organic Framework for Selective Hysteretic Sorption of Carbon Dioxide. Nature Mater., 2012, 11, 710–716.
[34] A. Perea-Cachero, E. Romero, C. Téllez and J. Coronas, Insight into the Reversible Structural Crystallinestate Transformation from MIL-53(Al) to MIL-68(Al). CrystEngComm., 2018, 20, 402–406.
[35] F. Tan, A. López-Periago, M. E. Light, J. Cirera, E. Ruiz, A. Borrás, F. Teixidor, C. Viñas, C. Domingo and J. G. Planas, An Unprecedented Stimuli−Controlled Single−Crystal Reversible Phase Transition of a Metal–Organic Framework and Its Application to a Novel Method of Guest Encapsulation. Adv. Mater., 2018, 1800726.
[36] B. Xiao, P. J. Byrne, P. S. Wheatley, D. S. Wragg, X. Zhao, A. J. Fletcher, K. M. Thomas, L. Peters, J. S. O. Evans, J. E. Warren, W. Zhou and R. E. Morris, Chemically Blockable Transformation and Ultraselective Low−pressure Gas Adsorption in a Non−Porous Metal Organic Framework. Nat. Chem., 2009, 1, 289–294.
[37] S. Yuan, Y.-P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang, M. Bosch, T.-F. Liu, X. Lian and H.-C. Zhou, Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal–Organic Frameworks. Angew. Chem. Int. Edit., 2015, 54, 14696–14700.
[38] H. Wu, Y. S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim and Wei Zhou, Unusual and Highly Tunable Missing−Linker Defects in Zirconium Metal−Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. J. Am. Chem. Soc., 2013, 135, 10525–10532.
[39] N. C. Burtch, H. Jasuja and K. S. Walton, Water Stability and Adsorption in Metal−Organic Frameworks. Chem. Rev., 2014, 114, 10575–10612.
[40] T. Wittmann, R. Siegel, N. Reimer, W. Milius, N. Stock and J. Senker, Enhancing the Water Stability of Al-MIL-101-NH2 via Post synthetic Modification. Chem. Eur. J., 2015, 21, 314–323.
[41] B. L. Oliveira, Z. Guo and G. J. L. Bernardes, Inverse Electron Demand Diels–Alder Reactions in Chemical Biology. Chem. Soc. Rev., 2017, 46, 4895–4950.
[42] B. Bhushan, Y. C. Jung and K. Koch, Micro−, Nano− and Hierarchical Structures for Superhydrophobicity, Self−Cleaning and Low Adhesion. Phil. Trans. R. Soc. A., 2009, 367, 1631–1672.
[43] R. A. Young and D. I. Wiles, Profile Shape Functions in Rietveld Refinements. J. Appl. Cryst., 1982, 15, 430–438.
第二章:
[1] C. M. Dobson, Protein Folding and Misfolding. Nature, 2003, 426, 884–890.
[2] A. R. Fersht and V. Daggett, Protein Folding and Unfolding at Atomic Resolution. Cell, 2002, 108, 573–582.
[3] M. Auton and D. W. Bolen, Predicting the Energetics of Osmolyte-Induced Protein Folding/Unfolding. Proc. Natl. Acad. Sci., 2005, 102, 15065–15068.
[4] C. Serre, C. Mellot-Draznieks, S. Surblé, N. Audebrand, Y. Filinchuk and G. Férey, Role of Solvent-Host Interactions that Lead to Very Large Swelling of Hybrid Frameworks. Science, 2007, 315, 1828–1831.
[5] C. Serre, F. Millange, C. Thouvenot, M. Noguès, G. Marsolier, D. Louër and G. Férey, Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)•{O2C–C6H4–CO2}•{HO2C–C6H4–CO2H}x•H2Oy. J. Am. Chem. Soc., 2002, 124, 13519–13526.
[6] J. A. Mason, J. Oktawiec, M. K. Taylor, M. R. Hudson, J. Rodriguez, J. E. Bachman, M. I. Gonzalez, A. Cervellino, A. Guagliardi, C. M. Brown, P. L. Llewellyn, N. Masciocchi and J. R. Long, Methane Storage in Flexible Metal-Organic Frameworks with Intrinsic Thermal Management. Nature, 2015, 527, 357–361.
[7] A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel and R. A. Fischer, Flexible Metal-Organic Frameworks. Chem. Soc. Rev., 2014, 43, 6062–6096.
[8] S. Yuan, L. Zou, H. Li, Y.-P. Chen, J. Qin, Q. Zhang, W. Lu, M. B. Hall and H.-C. Zhou, Flexible Zirconium Metal-Organic Frameworks as Bioinspired Switchable Catalysts. Angew. Chem. Int. Ed., 2016, 55, 10776–10780.
[9] J. Su, S. Yuan, H.-Y. Wang, L. Huang, J.-Y. Ge, E. Joseph, J. Qin, T. Cagin, J.-L. Zuo and H.-C. Zhou, Redox-Switchable Breathing Behavior in Tetrathiafulvalene-Based Metal-Organic Frameworks. Nat. Commun., 2017, 8, 2008.
[10] P. Z. Moghadam, J. F. Ivy, R. K. Arvapally, A. M. d. Santos, J. C. Pearson, L. Zhang, E. Tylianakis, P. Ghosh, I. W. H. Oswald, U. Kaipa, X. Wang, A. K. Wilson, R. Q. Snurr and M. A. Omary, Adsorption and Molecular Siting of CO2, Water, and Other Gases in the Superhydrophobic, Flexible Pores of FMOF-1 from Experiment and Simulation. Chem. Sci., 2017, 8, 3989–4000.
[11] D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons and T. Düuren, Opening the Gate: Framework Flexibility in ZIF-8 Explored by Experiments and Simulations. J. Am. Chem. Soc., 2011, 133, 8900–8902.
[12] A. Knebel, B. Geppert, K. Volgmann, D. I. Kolokolov, A. G. Stepanov, J. Twiefel, P. Heitjans, D. Volkmer and J. Caro, Defibrillation of Soft Porous Metal-Organic Frameworks with Electric Fields. Science, 2017, 358, 347–351.
[13] R. E. Morris and L. Brammer, Coordination Change, Lability and Hemilability in Metal-Organic Frameworks. Chem. Soc. Rev., 2017, 46, 5444–5462.
[14] S. Yuan, Y.-P. Chen, J. Qin, W. Lu, X. Wang, Q. Zhang, M. Bosch, T.-F. Liu, X. Lian and H.-C. Zhou, Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks. Angew. Chem. Int. Ed., 2015, 54, 14696–14700.
[15] S. B. Choi, H. Furukawa, H. J. Nam, D.-Y. Jung, Y. H. Jhon, A. Walton, D. Book, M. O’Keeffe, O. M. Yaghi and J. Kim, Reversible Interpenetration in a Metal-Organic Framework Triggered by Ligand Removal and Addition. Angew. Chem. Int. Ed., 2012, 51, 8791–8795.
[16] P. K. Allan, B. Xiao, S. J. Teat, J. W. Knight and R. E. Morris, In Situ Single-Crystal Diffraction Studies of the Structural Transition of Metal-Organic Framework Copper 5-Sulfoisophthalate, Cu-SIP-3. J. Am. Chem. Soc., 2010, 132, 3605–3611.
[17] B. Xiao, P. J. Byrne, P. S. Wheatley, D. S. Wragg, X. Zhao, A. J. Fletcher, K. M. Thomas, L. Peters, . S. O. Evans, J. E. Warren, W. Zhou and R. E. Morris, Chemically Blockable Transformation and Ultraselective Low-Pressure Gas Adsorption in a Non-Porous Metal Organic Framework. Nat. Chem., 2009, 1, 289–294.
[18] S. K. Ghosh, J. P. Zhang and S. Kitagawa, Reversible Topochemical Transformation of a Soft Crystal of a Coordination Polymer. Angew. Chem. Int. Ed., 2007, 46, 7965–7968.
[19] P. Smart, C. A. Mason, J. R. Loader, A. J. H. M. Meijer, A. J. Florence, K. Shankland, A. J. Fletcher, S. P. Thompson, M. Brunelli, A. H. Hill and L. Brammer, Zipping and Unzipping of a Paddlewheel Metal-Organic Framework to Enable Two–Step Synthetic and Structural Transformation. Chem. Eur. J., 2013, 19, 3552–3557.
[20] DS BIOVIA. Dassault Systèmes BIOVIA. Retrieved 24 January 2017.
[21] I. Senkovska, F. Hoffmann, M. Fröba, J. Getzschmann, W. Böhlmann and S. Kaskel, New Highly Porous Aluminium Based Metal-Organic Frameworks: Al(OH)(ndc) (ndc = 2, 6-Naphthalene Dicarboxylate) and Al(OH)(bpdc) (bpdc = 4,4′-Biphenyl Dicarboxylate). Microporous Mesoporous Mater., 2009, 122, 93–98.
[22] G. M. Sheldrick, A Short History of SHELX. Acta Cryst., 2008, A64, 112–122.
[23] A. L. Spek, Structure Validation in Chemical Crystallography. Acta Cryst., 2009, D65, 148–155.
[24] A. C. Larson and R. B. Von Dreele, "General Structure Analysis System (GSAS)", Los Alamos National Laboratory Report LAUR 86–748 (2000). B. H. Toby, EXPGUI, A Graphical User Interface for GSAS, J. Appl. Cryst., 2001, 34, 210–213.
[25] A. Altomare, C. Cuocci, C. Giacovazzo, A. Moliterni, R. Rizzi, N. Corriero and A. Falcicchio, EXPO2013: A Kit of Tools for Phasing Crystal Structures from Powder Data. J. Appl. Cryst., 2013, 46, 1231–1235.
[26] K. Barthelet, J. Marrot, G. Férey and D. Riou, VIII(OH){O2C–C6H4–CO2}•(HO2C–C6H4–CO2H)x(DMF)y(H2O)z (or MIL-68), A New Vanadocarboxylate with a Large Pore Hybrid Topology: Reticular Synthesis with Infinite Inorganic Building Blocks? Chem. Commun., 2004, 1, 520–521.
[27] D. A. Gómez-Gualdrón, P. Z. Moghadam, J. T. Hupp, O. K. Farha and R. Q. Snurr, Application of Consistency Criteria to Calculate BET Areas of Micro- and Mesoporous Metal−Organic Frameworks. J. Am. Chem. Soc., 2016, 138, 215–224.
[28] B. Delley, From Molecules to Solids with the DMol3 Approach, J. Chem. Phys., 2000, 113, 7756–7764.
[29] B. Delley, An All-Electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules. J. Chem. Phys., 1990, 92, 508–517.
[30] J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 1996, 77, 3865–3868.
[31] S. Grimme, Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction. J. Comput. Chem., 2006, 27, 1787–1799.
[32] G. Ashiotis, A. Deschildre, Z. Nawaz, J. P. Wright, D. Karkoulis, F. E. Picca and J. Kieffer, The Fast Azimuthal Integration Python Library: pyFAI, J. Appl. Crystallogr., 2015, 48, 510–519.
[33] P. Juhás, T. Davis, C. L. Farrowa and S. J. L. Billinge, PDFgetX3: A Rapid and Highly Automatable Program for Processing Powder Diffraction Data into Total Scattering Pair Distribution Functions. J. Appl. Cryst., 2013, 46, 560–566.
[34] C. L. Farrow, P. Juhas, J. W. Liu, D. Bryndin, E. S. Božin, J. Bloch, T. Proffen and S. J. L. Billinge, PDFfit2 and PDFgui: Computer Programs for Studying Nanostructure in Crystals. J. Phys.: Condens. Matter, 2007, 19, 335219.
[35] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille and G. Férey, A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) upon Hydration. Chem. Eur. J., 2004, 10, 1373–1382.
[36] Q. Yang, S. Vaesen, M. Vishnuvarthan, F. Ragon, C. Serre, A. Vimont, M. Daturi, G. D. Weireld and G. Maurin, Probing the Adsorption Performance of the Hybrid Porous MIL-68(Al): A Synergic Combination of Experimental and Modelling Tools. J. Mater. Chem., 2012, 22, 10210–10220.
[37] T. D. Bennett1, J.-C. Tan, Y. Yue, E. Baxter, C. Ducati, N. J. Terrill, H. H.-M Yeung, Z. Zhou, W. Chen, S. Henke1, A. K. Cheetham and G. N. Greaves, Hybrid Glasses from Strong and Fragile Metal-Organic Framework Liquids. Nat. Comm., 2015, 6, 8079.
[38] A. B. Cairns and A. L. Goodwin, Structural Disorder in Molecular Framework Materials. Chem. Soc. Rev., 2013, 42, 4881–4893.
[39] R. Gaillac, P. Pullumbi, K. A. Beyer, K. W. Chapman, D. A. Keen, T. D. Bennett and F.-X. Coudert, Liquid Metal-Organic Frameworks. Nat. Mater., 2017, 16, 1149–1154.
[40] D. Umeyama, S. Horike, M. Inukai, T. Itakura and S. Kitagawa, Reversible Solid-to-Liquid Phase Transition of Coordination Polymer Crystals. J. Am. Chem. Soc., 2015, 137, 864–870.
[41] E. Alvarez, N. Guillou, C. Martineau, B. Bueken, B. V. D. Voorde, C. L. Guillouzer, P. Fabry, F. Nouar, F. Taulelle, D. D. Vos, J.-S. Chang, K. H. Cho, N. Ramsahye, T. Devic, M. Daturi, G. Maurin and C. Serre, The Structure of the Aluminum Fumarate Metal-Organic Framework A520. Angew. Chem. Int. Ed., 2015, 54, 3664–3668.
[42] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille and G. Férey, A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) upon Hydration. Chem. Eur. J., 2004, 10, 1373–1382.
[43] Y. Jiang, J. Huang, S. Marx, W. Kleist, M. Hunger and A. Baiker, Effect of Dehydration on the Local Structure of Framework Aluminum Atoms in Mixed Linker MIL-53(Al) Materials Studied by Solid-State NMR Spectroscopy. J. Phys. Chem. Lett., 2010, 1, 2886–2890.
[44] T. R. Whitfield, X. Q. Wang, L. M. Liu and A. J. Jacobson, Metal-Organic Frameworks Based on Iron Oxide Octahedral Chains Connected by Benzenedicarboxylate Dianions. Solid State Sci., 2005, 7, 1096–1103.
[45] C. K. Brozek, V. K. Michaelis, T.-C. Ong, L. Bellarosa, N. López, R. G. Griffin and M. Dincă, Dynamic DMF Binding in MOF-5 Enables the Formation of Metastable Cobalt-Substituted MOF-5 Analogues. ACS Cent. Sci., 2015, 1, 252–260.
[46] P. Palmas, E. Girard, E. Pasquinet, T. Caron and D. Poullain, Spectral Assignments for 1H,13C and 15N Solution and Solid-State NMR Spectra of s-Tetrazine and Dihydro-s-Tetrazine Derivatives. Magn. Reson. Chem., 2007, 45, 65–71.
[47] S. Sneddon, J. Kahr, A. F. Orsi, D. J. Price, D. M. Dawson, P. A. Wright and S. E. Ashbrook, Investigation of Zeolitic Imidazolate Frameworks Using 13C and 15N Solid-State NMR Spectroscopy. Solid State Nuclear Magnetic Resonance, 2017, 87, 54–64.
[48] S. Samanta and P. Biswas, Metal Free Visible Light Driven Oxidation of Alcohols to Carbonyl Derivatives Using 3, 6-Di(pyridine-2-yl)-1,2,4,5-Tetrazine (pytz) As Catalyst. RSC Adv., 2015, 5, 84328–84333.
[49] N. Colthup, L. Daly and S. Wiberley, Introduction to Infrared and Raman spectroscopy. 3rd edn, 1990.
[50] A. J. Howarth, A. W. Peters, N. A. Vermeulen, T. C. Wang, J. T. Hupp and O. K. Farha, Best Practices for the Synthesis, Activation, and Characterization of Metal-Organic Frameworks. Chem. Mater., 2017, 29, 26–39.
[51] J. Ma, A. P. Kalenak, A. G. Wong–Foy and A. J. Matzger, Rapid Guest Exchange and Ultra-Low Surface Tension Solvents Optimize Metal-Organic Framework Activation. Angew. Chem. Int. Ed., 2017, 129, 14810–14813.
[52] A. Houde, A. Kademi and D. Leblanc, Lipases and Their Industrial Applications - An Overview. Appl. Biochem. Biotech., 2004, 118, 155–170.
[53] M. Svedendahl, K. Hult and P. Berglund, Fast Carbon-Carbon Bond Formation by a Promiscuous Lipase. J. Am. Chem. Soc., 2005, 127, 17988–17989.
[54] D. S. Tan, M. M. Gunter and Drueckhammer, D. G. Enzymatic Resolution Coupled with Substrate Racemization Using a Thioester Substrate. J. Am. Chem. Soc., 1995, 117, 9093–9094.
[55] H. He, H. Han, H. Shi, Y. Tian, F. Sun, Y. Song, Q. Li and G. Zhu, Construction of Thermophilic Lipase-Embedded Metal Organic Frameworks via Biomimetic Mineralization: A Biocatalyst for Ester Hydrolysis and Kinetic Resolution. Acs. Appl. Mater. Inter., 2016, 8, 24517–24524.
[56] A. Aijaz, A. Karkamkar, Y. J. Choi, N. Tsumori, E. Rönnebro, T. Autrey, H. Shioyama and Q. Xu, Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal-Organic Framework: A Double Solvents Approach. J. Am. Chem. Soc., 2012, 134, 13926–13929.
第三章:
[1] T. Darmanin, E. T. de Givenchy, S. Amigoni and F. Guittard, Superhydrophobic Surfaces by Electrochemical Processes. Adv. Mater., 2013, 25, 1378–1394.
[2] X. M. Li, D. Reinhoudt and M. Crego-Calama, What Do We Need for a Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces. Chem. Soc. Rev., 2007, 36, 1350–1368.
[3] M. J. Liu, Y. M. Zheng, J. Zhai and L. Jiang, Bioinspired Super-antiwetting Interfaces with Special Liquid-Solid Adhesion. Accounts Chem. Res., 2010, 43, 368–377.
[4] S. J. Pan, A. K. Kota, J. M. Mabry and A. Tuteja, Superomniphobic Surfaces for Effective Chemical Shielding. J. Am. Chem. Soc., 2013, 135, 578–581.
[5] B. Su, Y. Tian and L. Jiang Bioinspired Interfaces with Superwettability: From Materials to Chemistry. J. Am. Chem. Soc., 2016, 138, 1727–1748.
[6] Q. Xu, Y. Wan, T. S. Hu, T. X. Liu, D. Tao, P. H. Niewiarowski, Y. Tian, Y. Liu, L. Dai, Y. Yang and Z. Xia, Robust Self-Cleaning and Micromanipulation Capabilities of Gecko Spatulae and Their Bio-mimics. Nat. Commun., 2015, 6.
[7] A. Tuteja, W. Choi, M. Ma, J. M. Mabry, S. A. Mazzella, G. C. Rutledge, G. H. McKinley and R. E. Cohen, Designing Superoleophobic Surfaces. Science, 2007, 318, 1618–1622.
[8] L. Feng, Z. Zhang, Z. Mai, Y. Ma, B. Liu, L. Jiang and D. Zhu, A Super-Hydrophobic and Super-Oleophilic Coating Mesh Film for the Separation of Oil and Water. Angew. Chem. Int. Edit., 2004, 43, 2012–2014.
[9] B. Wang, W. X. Liang, Z. G. Guo and W. M. Liu, Biomimetic Super-Lyophobic and Super-Lyophilic Materials Applied for Oil/Water Separation: A New Strategy Beyond Nature. Chem. Soc. Rev., 2015, 44, 336–361.
[10] Z. Xue, S. Wang, L. Lin, L. Chen, M. Liu, L. Feng and L. Jiang, A Novel Superhydrophilic and Underwater Superoleophobic Hydrogel-Coated Mesh for Oil/Water Separation. Adv. Mater., 2011, 23, 4270–4273.
[11] A. Carne-Sanchez, K. C. Stylianou, C. Carbonell, M. Naderi, l. lmaz and Daniel Maspoch, Protecting Metal-Organic Framework Crystals from Hydrolytic Degradation by Spray-Dry Encapsulating Them into Polystyrene Microspheres. Adv. Mater., 2015, 27, 869–873.
[12] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe and O. M. Yaghi, Systematic Design of Oore Size and Functionality in Isoreticular MOF and Their Application in Methane Storage. Science, 2002, 295, 469–472.
[13] M. Li, D. Li, M. O’Keeffe and O. M. Yaghi, Topological Analysis of Metal-Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle. Chem. Rev., 2014, 114, 1343–1370.
[14] W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle III, M. Boscha and H.-C. Zhou, Tuning the Structure and Function of Metal-Organic Frameworks via Linker Design. Chem. Soc. Rev., 2014, 43, 5561–5593.
[15] H.-C. Zhou, J. R. Long and O. M. Yaghi, Introduction to Metal-Organic Frameworks. Chem. Rev., 2012, 112, 673–674.
[16] C. Y. Liu, Q. Liu and A. S. Huang, A Superhydrophobic Zeolitic Imidazolate Framework (ZIF-90) with High Steam Stability for Efficient Recovery of Bioalcohols. Chem. Commun., 2016, 52, 3400–3402.
[17] C. Serre, Superhydrophobicity in Highly Fluorinated Porous Metal-Organic Frameworks. Angew. Chem. Int. Edit., 2012, 51, 6048–6050.
[18] S. Roy, V. M. Suresh and T. K. Maji, Self-Cleaning MOF: Realization of Extreme Water Repellence in Coordination Driven Self-Assembled Nanostructures. Chem. Sci., 2016, 7, 2251–2256.
[19] C.-T. He, L. Jiang, Z.-M. Ye, R. Krishna, Z.-S. Zhong, P.-Q. Liao, J. Xu, G. Ouyang, J.-P. Zhang and X.-M. Chen, Exceptional Hydrophobicity of a Large-Pore Metal-Organic Zeolite. J. Am. Chem. Soc., 2015, 137, 7217–7223.
[20] J. G. Nguyen and S. M. Cohen Moisture-Resistant and Superhydrophobic Metal-Organic Frameworks Obtained via Postsynthetic Modification. J. Am. Chem. Soc., 2010, 132, 4560–4561.
[21] P. Deria, J. E. Mondloch, E. Tylianakis, P. Ghosh, W. Bury, R. Q. Snurr, J. T. Hupp and O. K. Farha, Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO2 Adsorption Studies. J. Am. Chem. Soc., 2013, 135, 16801–16804.
[22] W. Zhang, Y. L. Hu, J. Ge, H. L. Jiang and S. H. Yu, A Facile and General Coating Approach to Moisture/Water-Resistant Metal-Organic Frameworks with Intact Porosity. J. Am. Chem. Soc., 2014, 136, 16978–16981.
[23] Q. Sun, H. He, W.-Y. Gao, B. Aguila, L. Wojtas, Z. Dai, J. Li, Y.-S. Chen, F.-S. Xiao and S. Ma, Imparting Amphiphobicity on Single-Crystalline Porous Materials. Nat. Commun., 2016, 7.
[24] R. A. A. Foster and M. C. Willis, Tandem Inverse-Electron-Demand Hetero-/Retro-Diels-Alder Reactions for Aromatic Nitrogen Heterocycle Synthesis. Chem. Soc. Rev., 2013, 42, 63–76.
[25] A. C. Knall and C. Slugovc, Inverse Electron Demand Diels-Alder (iEDDA)-Initiated Conjugation: A (High) Potential Click Chemistry Scheme. Chem. Soc. Rev., 2013, 42, 5131–5142.
[26] M. L. Blackman, M. Royzen and J. M. Fox, Tetrazine Ligation: Fast Bioconjugation Based on Inverse-Electron-Demand Diels-Alder Reactivity. J. Am. Chem. Soc., 2008, 130, 13518–13518.
[27] C. Chen, C. A. Allen and S. M. Cohen, Tandem Postsynthetic Modification of Metal-Organic Frameworks Using an Inverse-Electron-Demand Diels-Alder Reaction. Inorg. Chem., 2011, 50, 10534–10536.
[28] Claire F. Hansell, Pieter Espeel, Milan M. Stamenović, Ian A. Barker, Andrew P. Dove, Filip E. Du Prez and R. K. O’Reilly, Additive-Free Clicking for Polymer Functionalization and Coupling by Tetrazine-Norbornene Chemistry. J. Am. Chem. Soc., 2011, 133, 13828–13831.
[29] D. A. Roberts, Ben S. Pilgrim, Jonathan D. Cooper, Tanya K. Ronson, Salvatore Zarra and Jonathan R. Nitschke, Post-assembly Modification of Tetrazine-Edged (Fe4L6)-L-II Tetrahedra. J. Am. Chem. Soc., 2015, 137, 10068–10071.
[30] J. Schoch, M. Wiessler and A. Jaschke, Post-Synthetic Modification of DNA by Inverse-Electron-Demand Diels-Alder Reaction. J. Am. Chem. Soc., 2010, 132, 8846–8847.
[31] C. F. Hansell, P. Espeel, M. M. Stamenović, I. A. Barker, A. P. Dove, F. E. Du Prez and R. K. O’Reilly, Additive-Free Clicking for Polymer Functionalization and Coupling by Tetrazine_Norbornene Chemistry. J. Am. Chem. Soc., 2011, 133, 13828–13831.
[32] J. Ge, L.-A. Shi, Y.-C. Wang, H.-Y. Zhao, H.-B. Yao, Y.-B. Zhu, Y. Zhang, H.-W. Zhu, H.-A. Wu and S.-H. Yu, Joule-Heated Graphene-Wrapped Sponge Enables Fast Clean-Up of Viscous Crude-Oil Spill. Nat. Nanotechnol., 2017, 12, 434–440.
[33] Z. X. Xue, Y. Z. Cao, N. Liu, L. Feng and L. Jiang, Special Wettable Materials for Oil/Water Separation. J. Mater. Chem. A, 2014, 2, 2445–2460.
[34] A. Jernelov, How to Defend Against Future Oil Spills. Nature, 2010, 466, 182–183.
[35] C. H. Peterson, S. D. Rice, J. W. Short, D. Esler, J. L. Bodkin, B. E. Ballachey and D. B. Irons, Long-Term Ecosystem Response to the Exxon Valdez Oil Spill. Science, 2003, 302, 2082–2086.
附錄A:
[1] Aijaz, A. et al. Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal-Organic Framework: A Double Solvents Approach. J. Am. Chem. Soc., 2012, 134, 13926-13929.
[2] Smith, P. K. et al. Measurement of Protein Using Bicinchoninic Acid. Anal. Biochem., 1985, 150, 76-85.
[3] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille, G. Férey: A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chem. Eur. J., 2004, 10, 1373–1382.
[4] Q. Yang, S. Vaesen, M. Vishnuvarthan, F. Ragon, C. Serre, A. Vimont, M. Daturi, G. De Weireld and G. Maurin, Probing the Adsorption Performance of the Hybrid Porous MIL-68(Al): A Synergic Combination of Experimental and Modelling Tools. J. Mater. Chem., 2012, 22, 10210–10220.
[5] S.-H. Lo, C.-H. Chien, Y.-L. Lai, C.-C. Yang, J. J. Lee, D. S. Raja and C.-H. Lin, A Mesoporous Aluminium Metal–Organic Framework with 3 nm Open Pores. J. Mater. Chem. A, 2013, 1, 324–329.
[6] W.-L. Liu, S.-H. Lo, B. Singco, C.-C. Yang, H.-Y. Huang and C.-H. Lin, Novel Trypsin–FITC@MOF Bioreactor Efficiently Catalyzes Protein Digestion. J. Mater. Chem. B, 2013, 1, 928–932.