簡易檢索 / 詳目顯示

研究生: 邱國創
CHIU, KUO CHUANG
論文名稱: p 型鋰掺雜氧化鋅薄膜製程及電性研究
Fabrication and electrical properties of p-Type Li-doped ZnO Thin Films
指導教授: 簡朝和
口試委員: 曾俊元
林江財
林澤勝
劉國辰
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 96
中文關鍵詞: 全始計算方法軟性化學合成法氧化鋅直流脈衝濺鍍法
外文關鍵詞: Vienna abinitio simulation package, soft chemical routes, ZnO, DC Pulsed sputtering
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中主要為包含四個部分:首先以全始計算方法應用於p-type ZnO金屬氧化物中摻雜物,對其電性及p/n type的關連與學理的可行性進行探討,第二部分為鋰摻雜氧化鋅材料粉體合成與靶材製作上,運用軟性化學合成法之液態反應法合成所要的粉體,其最大的優點在於能獲得組成均勻,粒徑大小在一定範圍內(50~100nm)的粉末,且再現性極佳。而這類反應法的另一優點為:有可能研製一些僅在動力學上存在的晶相,可以解決固態反應合成法僅能研製一般熱力學上穩定才存在之晶相的問題,並解決微量添加時添加元素在本體得均勻性及合成相與化學鍵結的成分設計,在粉體合成能在400 ℃準確合成出0.05 to 0.8 mole % 鋰參雜氧化鋅粉體,並製作成靶材。
    第三部份,利用直流脈衝濺鍍法(DC Pulsed sputtering)鍍製鋰摻雜氧化鋅膜層,探討製程參數對鋰摻雜氧化鋅光電性質的控制,目的在獲得穩定的鋰摻雜氧化鋅薄膜,在實驗中以二次離子質譜儀確認薄膜中Li元素含量及霍爾效應量測儀量測電性及p/n type確認,藉以分析製程參數對鋰摻雜氧化鋅膜層特性的影響,在0.2mole%配比粉體製作成三吋靶材,成功的在室溫下濺鍍出p-type 透明的氧化鋅薄膜, 其特性為膜厚 : 573nm,resistivity : 1.302 (Ω-cm),mobility : 0.94 (cm2/V•s), carrier concentration : 5.08 ×1018 (cm-3),transmittance : 95%,找出主要製程控制因子有基板溫度,Ar 氣體流速,與濺鍍功率等。最後經實驗證明較高的機板溫度使得Li參雜濃度下降,而p type特性變差。 同樣的在較高的Ar氣體流速的情況下,也使得Li參雜濃度下降, 但在較高的濺鍍功率下,Li參雜濃度上升,而使p type特性變佳.。
    第四部份,運用電化學阻抗分析量測方法,利用等效電路模擬在鋰摻雜氧化鋅膜層結構中鋰存在於晶粒與晶界位置上,對鋰摻雜氧化鋅膜層電性與光學特性的影響。並找出穩定p type 鋰摻雜氧化鋅膜層中鋰含量與膜層製程參數,最後以p-n junction量測方法,以current-voltage I-V Curve 驗證,確實在0.1~0.3 mole%下鋰摻雜氧化鋅膜層可形成穩定的p type 膜層。


    This study mainly focuses on the fabrication and electrical properties of Li-doped ZnO thin film, which includes four parts: I. Feasibility study on application of Vienna abinitio simulation package to the doping effect in p-type ZnO. II. Synthesis of Li-doped ZnO powder by soft chemical routes and the target fabrication. III. Thin film deposition of Li-doped ZnO by DC pulsed sputtering and study on the fabrication parameters. IV. Study of the electrical and optical properties of Li-doped ZnO thin film by impedance measurement.
    We first evaluated the feasibility of using the first principle method, namely Vienna abinitio simulation package, to study the doping effect in p-type ZnO by discussing the relationships between dopant and electrical properties or p/n type behavior of the doped ZnO material. With respect to the synthesis of Li-doped ZnO powder and target fabrication, we used solution-based soft chemical routes to obtain high reproducible, homogeneous particles in the size range between 50~100nm. This kind of solution-based synthetic method may generate dynamic-stabilized crystal phase while the solid state reaction route can only synthesize thermodynamic-stabilized crystal structures. It also provides more accurate control over the homogeneity of dopant and the composition design of crystal phase as well as covalent bonding. The Li-doped ZnO powder with 0.05 to 0.8 mole Li doping level was formed and made as a target for further use.
    For fabrication of stable Li-doped ZnO thin film and to understand the effect and control mechanism of fabrication parameters on the electrical and optical properties, we utilized DC pulsed sputtering to deposit Li-doped ZnO thin film, secondary ion mass spectrometry to determine Li element content, and Hall effect instrument to measure the electrical properties and confirm the p/n type behavior. By using 0.2 mole% Li doped ZnO powder, we successfully obtained transparent p-type ZnO thin film at room temperature. The characteristics of this thin film are: film thickness, 573 nm; resistivity, 1.302 (Ω-cm); mobility, 0.94 (cm2/V•s); carrier concentration, 5.08 x 1018 (cm-3); transmittance, 95%. We found the major factors in fabrication process are temperature of substrate, flow rate of Ar carrier gas and sputtering power. As the temperature of substrate or the flow rate of Ar carrier gas increased, the doping concentration of Li decreased and led to a poorer p-type property. However, the higher the sputtering power, the richer the Li doping concentration, which enhances the p-type property.
    We further applied the electrical impedance measurement to the study of Li doping effect. By simulating Li atoms existing in the grain or on the grain boundary with equivalent circuit, the influence of Li dopant on the electrical and optical properties of Li-doped ZnO thin film could be analyzed. Accordingly, the optimal Li dopant content and fabrication parameters for stable Li-doped ZnO thin films were found. In the final part of this study, we demonstrated Li-doped ZnO with Li doping level of 0.1 to 0.3 mole could form stable p-type thin film by characterization with current-voltage I-V curve for p-n junction measurement.

    目 錄 摘要 I 英文摘要 IIII 致謝 V 目錄 VI 表目錄 XII 圖目錄 XIII 第一章 緒論 1 1.1前言 1 1.2 研究動機與研究方法 3 第二章 氧化鋅理論基礎 .5 2.1 氧化鋅晶體結構與特性 5 2.2 氧化鋅之相圖與摻雜 6 第三章 第一原理-全始計算法 8 3.1第一原理-全始計算法 (First Principles method -Vienna abinitio simulation package(VASP) 8 3.2 全始計算模擬演算氧化鋅摻雜特性分析 10 3.2.1計算方法與模型建立 10 3.2.2 計算結果與討論 11 3.2.3 Li摻雜ZnO缺陷研究分析 28 3.2.4結果整理 32 第四章 實驗原理及量測系統 33 4.1 直流脈衝濺鍍機 33 4.2薄膜表面及晶體結構的分析儀器 33 4.2.1 掃描電子顯微鏡 33 4.2.2 X射線(X-Ray)繞射原理 33 4.2.3 二次離子質譜儀 33 4.2.4 穿透率量測 33 4.2.5 膜厚量測 34 4.2.6 霍爾效應量測 34 4.2.7 電化學阻抗分析 34 第五章 實驗方法與步驟 38 5.1 粉體合成與靶材製備 38 5.1.1 LiZnO 前驅物粉體合成 38 5.1.2 LiZnO 粉體合成 38 5.1.3 LiZnO靶材製作程序 40 5.1.4 LiZnO靶材成分與配方 40 5.2 薄膜濺鍍製程 41 5.2.1 靶材尺寸 41 5.2.2 基板清洗 42 5.2.3 濺鍍操作程序 42 5.2.4 濺鍍實驗條件 43 5.3 物理性質量測 44 5.3.1 紅外線光譜分析 44 5.3.2 熱分析 44 5.3.3 X-ray繞射分析 44 5.3.4 粉體與塊材基本性質量測 44 5.3.5 二次離子質譜儀性質量測 45 5.3.6 霍爾效應量測分析 45 5.3.7 電化學阻抗頻譜分析 46 第六章 實驗結果與討論 47 6.1 粉體合成與靶材特性分析 47 6.1.1 LiZnO的粉體分析 47 6.1.2 LiZnO的靶材特性分析 51 6.1.3 結果整理 54 6.2 直流脈衝濺鍍法製程對鋰摻雜氧化鋅光電性質的影響 55 6.2.1 基板溫度對LiZnO膜層特性的影響 55 6.2.2 濺鍍功率對LiZnO膜層特性的影響 62 6.2.3 Ar氣體流速對LiZnO膜層特性的影響 64 6.2.4 結果整理 66 6.3 電化學阻抗分析模擬鋰摻雜氧化鋅膜層結構的影響 68 6.3.1 標準Li摻雜氧化鋅膜層控制與電性量測 68 6.3.2 Li摻雜氧化鋅膜層透光率分析 70 6.3.3 電化學阻抗等效模型建立 71 6.3.4不同鋰摻雜氧化鋅膜層量測與分析 76 6.3.5不同鋰摻雜氧化鋅膜層結構活化能分析 80 6.3.6 結果整理 82 6.4 p-n junction測試 83 6.4.1 p-n junction試片製作 83 6.4.2 p-n junction在不同含量鋰摻雜氧化鋅膜層特性量測 83 6.4.3 結果整理 84 第七章 結論 129 參考文獻 132 附錄A. (Published paper) A.1 Effect of zirconia content on electrical conductivities of mullite/zirconia composites measured by impedance spectroscopy A.2 Preparation and Electrical Properties of LaFeO3 Compacts Using Chemically Synthesized Powders A.3 Transparent and conductive ZnO:Al powder prepared by Soft Chemical route Process and Design of Experiment Technique A.4 Mobility Enhancement of Polycrystalline MgZnO/ZnO Thin Film Layers With Modulation Doping and Polarization Effects A.5 Influences of polarization effects in the electricals of polycrystalline MgZnO/ZnO heterostructure A.6 Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by rf-sputtering process A.7 Fabrication of p-Type Li-Doped ZnO Films by RF Magnetron Sputtering A.8 Functionalized Silica Nanoparticles by Nanometallic Ag Decoration for Optical Sensing of Organic Molecule A.9 Effects of Processing Parameters on Electrical Properties of p-Type Li-Doped ZnO Films by DC Pulsed Sputtering A.10 Impedance spectroscopy analysis of p type Li doped ZnO thin film effect 附錄B. (Patent) B.1 P-TYPE METAL OXIDE SEMICONDUCTOR MATERIAL AND FABRICATION METHOD THEREOF

    1. X.H. Wang, B. Yao, Z.Z. Zhang, B.H. Li, Z.P. Wei, D.Z. Shen, Y.M. Lu, and X.W. Fan: “The mechanism of formation and properties of Li-doped p-type ZnO grown by a two-step heat treatment” Semicond. Sci. Technol., 21, 494, (2006).
    2. Y.R. Ryu, S. Zhu, D.C. Look, J.M. Wrobel, H.M. Jeong and H.W. White: “Fabrication of homostructural ZnO p-n junctions” J. Cryst. Growth, 216, 330, (2000).
    3. B. Lin and Z.F. Yunbo Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates”Appl. Phys. Let., 79, 943, (2001).
    4. Y. Yoshino, T. Makino, Y. Katayama and T. Hata: “Optimization of zinc oxide thin film for surface acoustic wave filters by radio frequency sputtering”Vacuum, 59, 538, (2000).
    5. J.B. Lee, H.J. Lee, S.H. Seo and J.S. Park: “Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications” Thin Solid Films, 398-399, 641, (2000).
    6. H. Kawazoe, M.Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, “P-type electrical conduction in transparent thin films of CuAlO2” Nature, 389, 939-942, (1997).
    7. H. Yanagi, H. Kawazoe, A. Kudo, M.Yasukawa, and H. Hosono, “Magnetoresistance in Tunnel Junctions Made of Epitaxially Grown Manganate Films with 1.6-nm-Thick Barriers” J. Electroceram, 4, 427, (2000).
    8. A. Kudo, H. Yanagi, H. Hosono and M.Yasukawa, “SrCu2O2: A p-type conductive oxide with wide band gap” Appl. Phys. Lett., 73, 220, (1998).
    9. K. Ueda, S. Inoue, S. Hirose, H.Kawazoe, and H. Hosono, “Transparent p-type conducting CuScO2+x films” Appl. Phys. Lett., 77, 2701, (1998).
    10. S. Park and D.A. Keszler, M.M. Valencia, R.L. Hoffman, J.P. Bender, and J.F. Wager, “Transparent p-type conducting BaCu2S2 films” Appl. Phys. Lett., 80, 4393, (2002).
    11. A.V. Singh and R.M. Mehra, A. Wakahara and A. Yoshida, “p-type conduction in codoped ZnO thin films” Appl. Phys. Lett., 93, 396, (2003).
    12. C.H. Park, S.B. Zhang and S.H. Wei “Origin of p-type doping difficulty in ZnO: The impurity perspective” Phys. Rev. B, 66, 073202, (2002).
    13. C. Gonales, D. Block, R.T. Cox and A. Herve: “Revealing of dislocations in ZnS by chemical etching” J. Cryst. Growth, 59, 375, (1982).
    14. D. Block, A. Herve and R.T. Cox: “Optically detected magnetic resonance and optically detected ENDOR of shallow indium donors in ZnO” Phys. Rev. B, 25, 6049, (1982).
    15. A. Onodera, N. Tamaki, Y. Kawamura and I.N. Sakagami: “ Dielectric Activity and Ferroelectricity in Piezoelectric Semiconductor Li-Doped ZnO” Jpn. J. Appl. Phys., 35, 5160, (1996).
    16. M.G. Wardle, J.P. Goss and P.R. Bridon: “Theory of Li in ZnO: A limitation for Li-based p-type doping” Phys. Rev. B, 2005, 71, 155205.
    17. R.R, J.CK (1992) Optical properties of colorants or luminescent species in sol-gel glasses, Structure and bonding. Springer-Verlag, Heidelberg
    18. V. PP, “Influence of complexing agents and pH on yttrium-iron garnet synthesized by the sol-gel method” Lopez-Quintela MA Chem Mater 9:2836 (1997).
    19. H. D, S. W, M. P, P. R, Z.W. “Luminescence properties of Tb3+:Y3Al5O12 nanocrystallites prepared by the sol-gel method” Opt Mater 26:117 (2004).
    20. Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. L. Chen, D. Y. Li, L. P. Zhu, B. H. Zhao, and Y. L. Hu, “Realization of p-type ZnO films via monodoping of Li acceptor” J. Cryst. Growth., 283, 180–4, (2005).
    21. B. Xiao, Z. Ye, Y. Zhang, Y. Zeng, L. Zhu, and B. Zhao, “Fabrication of p-type Li-doped ZnO films by pulsed laser deposition” Appl. Surf. Sci., 253, 895–7, (2006).
    22. R. Ondo-Ndong, F. Pascal-Delannoy, “Structural properties of zinc oxide thin films prepared by RF magnetron sputtering” Material Science and Engineering, B97, 68, (2003).
    23. D.C. Look and J. W. Hemsky, J. R. Sizelove, “Residual Native Shallow Donor in ZnO” Phys. Rev. Lett., 82, 2552, (1999).
    24. Jin B.J., Bae S.H., Lee S. Y., “Effects of native defects on optical and electrical properties of ZnO prepared by pulsed laser deposition” Mater. Sci. Eng., 71, 301, (2000).
    25. A. Ohmoto, M. Kawasaki, “ Novel Semiconductor Technologies of ZnO Films towards Ultraviolet LEDs and Invisible FET”IEICE Trans. Electron., E83-C, 1614, (2000).
    26. V. Craciun, J. Elders, J.g.e. Gardeniers, J.Geretovsky, I. W. Boyd, “Growth of ZnO thin films on GaAs by pulsed laser deposition” Thin Solid Films. 259, 1-4, (1995).
    27. H. Takikawa, K. Kimura, “ZnO film formation using a steered and shielded reactive vacuum arc deposition” Thin Solid Films. 74, 377, (2000).
    28. S. Momose, T. Nakamura and K. Tachibana, “Microdischarge Optical Emission Spectroscopy as a Novel Diagnostic Tool for Metalorganic Chemical Vapor Deposition of (Ba,Sr)TiO3 Films” Jap. J. Appl. Phys., 39, 555, (2000).
    29. B. Sang, A. Yamada, M. Konagai. “ Textured ZnO Thin Films for Solar Cells Grown by a Two-step Process with the Atomic Layer Deposition Technique” Jap. J. Appl. Phys., 372B, L206, (1998).
    30. D. C. Look et al., “The future of ZnO light emitters” phys. Stat. Sol., 201, 2203, (2004).
    31. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand., “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors” Science., 287, 1019, (2000).
    32. Y. Kanai, “Admittance spectroscopy of ZnO crystals containing Ag” J. Appl. Phys., Part1 30, 703, (1991).
    33. E. Mollwo, G. Mueller and P. Wagner, “Energetische lage des Cu-akzeptorniveaus in ZnO-Einkristallen” Solid State Commun.,13 , (1973)
    34. J. Hafner, et al., “TowardComputational Materials Design: The Impact of Density Functional Theory on Materials Research” MRS BULLETIN VOL. 31, SEPTEMBER (2006).
    35. E Wimmer, “Summary of workshop 'Theory Meets Industry'—the impact of ab initio solid state calculations on industrial materials research” J. Phys. Condens. Matter 20, 064243, (2008).
    36. G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set” Phys. Rev. B 54, 11169 (1996)
    37. G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals” Phys. Rev. B 47, RC558 (1993)
    38. P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas” Phys. Rev. 136, B864 (1964)
    39. D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism” Phys. Rev. B, 41, 7892 (1990).
    40. F.C. Fonseca, E.N.S. Muccillo and R. Muccillo, “Analysis of the formation of ZrO2:Y2O3 solid solution by the electrochemical impedance spectroscopy technique” Solid State Ionics, 149, p. 309-318, (2002).
    41. A.R. West, D.C. Sinclair and N.Hirose, “Characterization of Electrical Material,Especially Ferroelectrics,by Impedance Spectroscopy” Journal of Electroceramics 1:1, p.65-71, (1997).
    42. K.C. Chiu., “Preparation and Characterization of Ga-Doped ZnO Nano powder by Sol-Gel Process” 2007 MRS Spring Meeting, April 9-13, 2007 Moscone West San Francisco Marriott, San Francisco, CA, USA
    43. K.C. Chiu., “Impedance Spectroscopy Modeling of LSGM-based Composite Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells” 2007 MRS Fall Meeting, November 26 - 30, 2007 Hynes Convention Center and Sheraton Boston Hotel Boston, MA

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE