簡易檢索 / 詳目顯示

研究生: 黃仁豪
Jen-Hao Huang
論文名稱: 包含即時性需求與時間窗限制之機率性旅行推銷員問題
The Probabilistic Traveling Salesman Problem with Real-time Requests and Time Window Constraints
指導教授: 溫于平
Ue-Pyng Wen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 51
中文關鍵詞: 機率性旅行推銷員問題時間窗寬裕時間即時性需求
外文關鍵詞: Probabilistic Traveling Salesman Problem, time window, slack time, real-time demands
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今,提供隔日送達服務的物流業者 (overnight carriers) 必須尋求穩定的訂單來維持他們的競爭優勢。另一方面,物流業者也持續專注在培養處理即時性 (real-time) 需求的能力。盡可能滿足客戶的需求同時維持具競爭力的營運成本,是這類業者的共同目標。
    本篇論文的目的在建立一個包含時間窗限制的機率性旅行推銷員問題(Probabilistic Traveling Salesman Problem with Time Window Constraints, PTSPTW) 模式來處理機率性的需求。同時為了維持先驗 (a priori) 途程的彈性以應付未來可能發生的立即需求,模式中也導入了雙重時區 (Double Horizon) 的概念。我們提出了一個兩階段的啟發式演算法來處理這樣的問題。在此研究中發現,面對包含即時性需求的具時間窗限制之機率性旅行推銷員問題,尤其是即時性需求所佔比重較高的案例,維持先驗途程的彈性不但能夠滿足更多客戶的需求,更有助於降低車輛在途程中的總旅行時間。此外,在時間窗較狹窄與客戶需求機率較高的問題之中,具有較大彈性的先驗途程相對上也具有較大的優勢。


    Nowadays, in order to keeping competitive advantages, overnight carriers are searching for more stable orders. On the other hand, carriers also concentrate on developing abilities to deal with real-time demands continuously. The common goal of overnight carriers is satisfying needs of customers as possible while keeping operating costs competitive.
    The purpose of this thesis is to construct a Probabilistic Traveling Salesman Problem model with Time Window constraints (PTSPTW) to cope with probabilistic demands. Meanwhile, the idea of Double Horizon is incorporated into the model to maintain the flexibility of the a priori route for future possible immediate requests. A two stage heuristic algorithm is proposed to solve the PTSPTW. The conclusion is that the flexibility of the a priori route is helpful not only to satisfy more demands but also to reduce total traveling time of the vehicle in the problem with real-time demands, especially the cases which the weight of real-time demands is high. Besides, in the problems with narrow time window or high request probabilities, the a priori route with more flexibility has more advantages.

    摘要 i ABSTRACT ii 誌謝詞iii TABLE OF CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii 1. INTRODUCTION 1 1.1 Background 1 1.2 Motivation 2 1.3 Research Framework 3 2. LITERATURE REVIEW 5 2.1 Probabilistic Traveling Salesman Problem (PTSP) 5 2.1.1 Problem Definition and Related Models 5 2.1.2 Methodology and Complexities 7 2.2 Dynamic Traveling Salesman Problem/ Dynamic Vehicle Routing Problem (DTSP/DVRP) 9 2.2.1 Introduction 9 2.2.2 Courier mail services 10 2.2.3. Double-horizon (DH) based heuristic 11 3. MODEL CONSTRUCTION 13 3.1 Problem Statement 13 3.2 Model Framework 15 3.2.1 A multi-objective a priori PTSP model 16 3.2.2 Expected values in PTSP 18 4. TWO-STAGE HEURISTIC METHOD 21 4.1 The Local Search Techniques 21 4.1.1 The 2-p-opt local search 22 4.1.2 The 1-shift local search 23 4.2 Stage I - Initial Feasible Route Construction 25 4.2.1 The Slack-time Maximizing (STM) Method 25 4.2.2 The Backtracking Method 28 4.3 StageII - Route Improvement 31 5. COMPUTATIONAL RESULTS 33 5.1 Algorithms Comparisons 33 5.2 The Simulation Results of Different Parameter Settings 34 5.3 The Impacts of Different Proportions of Immediate Requests to All Customers 39 5.4 The Impacts of Different Widths of Time Windows 42 5.5 The Impacts of Different Request Probabilities 44 6. CONCLUSIONS 47 7. REFERENCES 49

    [1] Bellalouna, M., Murat, C., and Paschos, V. Th., “Probabilistic combinatorial optimization problems on graphs: A new domain in operational research”, European Journal of Operational Research, 87, 693-706(1995).
    [2] Beraldi, P., Ghiani, G.., Laporte, G.., and Musmanno, R., “Efficient neighborhood search for the probabilistic pickup and delivery traveling salesman problem”, Networks, 46, 195-198(2005).
    [3] Bertsimas, D. J., Howell, L. H., “Further results on the probabilistic traveling salesman problem”, European Journal of Operational Research, 65, 68-95(1993).
    [4] Bertsimas, D. J., Jaillet, P., and Odoni, A. R., “A priori optimization”, Operations Research, 38, 1019-1033(1990).
    [5] Bertsimas, D. J., Van Ryzin, G., “A stochastic and dynamic vehicle routing problem in the Euclidean plane”, Operations Research, 39, 601-615(1991).
    [6] Bianchi, L., Knowles, J., and Bowler, N. E., “Local search for the probabilistic traveling salesman problem: Correction to the 2-p-opt and 1-shift algorithms”, Discrete Optimization, 162, 206-219(2005).
    [7] Bowler, N. E., Fink, T. M. A., and Ball, R. C., “Characterization of the probabilistic traveling salesman problem”, Physical Review E, 68, 036703(2003).
    [8] Dumas, Y., Desrosiers, J., Gélinas, É., and Solomon, M. M., “An optimal algorithm for the traveling salesman problem with time windows” Operations Research, 43, 367-371(1995).
    [9] Gendreau, M., Potvin, J-Y., “Dynamic vehicle routing and dispatching”, Fleet Management and Logistics, Kluwer Academic Publishers, 115-126(1998).
    [10] Gendreau, M., Laporte, G., and Sėguin, R., “Stochastic vehicle routing”, European Journal of Operational Research, 88, 3-12(1996).
    [11] Gendreau, M., Hertz, A., Laporte, G., and Stan, M., “A generalize insertion heuristic for the traveling salesman problem with time windows” Operations Research, 46, 330 – 335(1998).
    [12] Ghiani, G., Guerriero, F., Laporte, G., and Musmanno, R., “Real-time vehicle routing: Solution concepts, algorithms and parallel strategies”, European Journal of Operational Research, 151, 1-11(2003).
    [13] Hall, R. W., “Pickup and delivery systems for the overnight carriers”, Transportation Research Part A, 30, 173-187(1996).
    [14] Jaillet, P., “Probabilistic traveling salesman problems”, Technical Report No. 185, Operations Research Center, MIT, Cambridge, Massachusetts(1985).
    [15] Jaillet, P., “Stochastic routing problems”, Stochastic in Combinatorial Optimization, World Scientific, 178-186(1987).
    [16] Jaillet, P. “A priori solution of a traveling salesman problem in which a random subset of the customers are visited”, Operations Research, 36, 929-936(1988).
    [17] Laporte, G., Louveaux, F. V., and Mercure, H., “A priori optimization of the probabilistic traveling salesman problem”, Operations Research, 42, 543-549(1994).
    [18] Larsen, A. “The dynamic vehicle routing problem”. Ph. D. thesis, Technical University of Denmark, Korgens, Lyngby, Denmark(2000).
    [19] Larsen, A., Madsen, O. B. G., and Solomon, M. M., “The a priori dynamic traveling salesman problem with time windows”, Transportation Science, 38, 459-472(2004).
    [20] Mitrović-Minić, S., Laporte, G.., “Waiting strategies for the dynamic pickup and delivery problem with time windows”, Transportation Research Part B, 38, 635-655(2004).
    [21] Mitrović-Minić, S., Krishnamurti, R., and Laporte, G.., “Double-horizon based heuristic for the dynamic pickup and delivery problem with time windows”, Transportation Research Part B, 38, 669-685(2004).
    [22] Psaraftis, H., “Dynamic vehicle routing problems”, Vehicle Routing: Methods and Studies, North-Holland, Amsterdam, 223-248(1988).
    [23] Psaraftis, H., “Dynamic vehicle routing: Status and prospects”, Annal of Operations Research, 61, 143-164 (1995).
    [24] Séguin, R., Potvin, J. Y., Gendreau, M., Crainic, T. G., and Marcotte, P., “Real-time decision problems: An operational research prospective”, Journal of the Operational Research Society, 48, 162-174(1997).
    [25] Solomon, M. M., “Algorithms for the vehicle routing and scheduling problems with time window constraints”, Operations Research,

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE