簡易檢索 / 詳目顯示

研究生: 沈文馨
Wen-Shin Shen
論文名稱: 微波處理對多壁奈米碳管/環氧樹脂複合材料機械性質之影響
The Influence of Microwave on the Mechanical Properties of the MWNT/Epoxy Composites
指導教授: 葉孟考
Meng-Kao Yeh
戴念華
Nyan-Hwa Tai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 91
中文關鍵詞: 多壁奈米碳管環氧樹脂微波田口法複合材料
外文關鍵詞: MWNTs, Epoxy, Microwave, Taguchi's method, Composites
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微波(microwave)是一種頻率介於300 MHz至300 GHz之間,波長範圍從1 m至1 mm之電磁波。與傳統加熱方式相比,微波加熱具備高速加熱、高熱效率、均勻加熱及選擇性加熱等優點。本研究以田口法L9(34)直交表規劃設計實驗,探討奈米碳管含量、預熱時間、微波功率及微波時間等因子對於微波硬化製程所製備奈米碳管/環氧樹脂複合材料的機械特性之影響,以拉伸試驗所獲得之楊氏模數及拉伸強度作為奈米碳管/環氧樹脂複合材料之品質特性,所找出最佳化的微波硬化製程參數為0.5 wt%之奈米碳管含量、90分鐘之預熱時間、90 W之微波功率及短(short)微波時間,在95%信心水準下所得之最佳預測值與驗證之實驗值信心區間有重疊;本研究並以微波後處理熱壓硬化製程所製備之複合材料,發現對於碳管含量1.0 wt%之複合材料而言,與未微波後處理比較,以微波功率270 W後處理10秒可提升楊氏模數達8.51%。本研究並以場發射掃描式電子顯微鏡觀察奈米碳管/環氧樹脂複合材料之拉伸斷面,發現拉伸強度較高之複合材料在拉伸斷面上其奈米碳管被拉出的長度較長。


    Microwave is an electromagnetic wave with the frequency ranging between 300 MHz to 300 GHz, and with the wavelength between 1 m to 1 mm. Microwave heating has several advantages such as high heating rate, high heating efficiency, uniform heating and selective heating when compared to the traditional heating method. Taguchi’s method with L9(34) orthogonal array was used to design the experiments, and discuss the influence of the factors such as the contents of the carbon nanotubes, pre-heating time, microwave power and microwave duration to the mechanical properties of the carbon nanotubes/epoxy composites. In this study, we take the Young’s modulus and the tensile strength which are obtained from the tensile test as quality characteristics of the carbon nanotubes/epoxy composites to find out the optimum parameters which are 0.5 wt% of the contents of the carbon nanotubes, 90 minutes of the pre-heating time, 90 W of the microwave power and short microwave duration. At the 95% confidence level, the confidence intervals of theoretical values and experimental results are overlapping. The carbon nanotubes/epoxy composites were fabricated by the hot press method and then were post processed by microwave irradiation with various durations and various powers, the Young’s modulus of carbon nanotubes/epoxy composites under microwave irradiation of 270 Watts for 10 seconds increased 8.51% when compared with the one without microwave irradiation. The SEM images of the tensile failure surface show that the pull out length of carbon nanotubes were longer with better tensile strength.

    摘 要 i Abstract ii 誌 謝 iii 目 錄 iv 圖 表 目 錄 vii 第一章 緒論 1 1.1研究動機 2 1.2文獻回顧 3 1.2.1奈米碳管簡介 3 1.2.2奈米碳管性質量測 4 1.2.3奈米複合材料之物理與機械性質 4 1.2.4微波硬化製程 6 1.2.5奈米碳管微波吸收性質 7 1.2.6奈米碳管熱傳性質 8 1.2.7田口法實驗設計 8 1.3研究主題 9 第二章 微波加熱原理與田口法 10 2.1微波加熱原理 10 2.2微波加熱奈米碳管/環氧樹脂複合材料機制 12 2.2.1微波硬化 12 2.2.1微波後處理 13 2.3數據分析 13 2.4田口法 14 2.4.1 訊噪比(S/N ratio) 15 2.4.2變異數分析 17 2.4.3最佳預測值 18 第三章 實驗步驟 20 3.1實驗儀器 20 3.1.1 CVD系統 20 3.1.2磁力攪拌機 20 3.1.3超音波震盪機 21 3.1.4真空烘箱 21 3.1.5熱風循環烤箱 21 3.1.6熱壓機 21 3.1.7微波爐 22 3.1.8溫度貼紙 22 3.1.9鑽石切割機 22 3.1.10拉伸試驗機 22 3.1.11場發射掃描式電子顯微鏡 23 3.2 CVD製備奈米碳管 23 3.3基材 24 3.4奈米碳管/環氧樹脂複合材料製備 25 3.4.1前處理 25 3.4.2熱壓硬化 26 3.4.3微波硬化 26 3.5微波後處理 27 3.6拉伸試驗 27 3.7場發射掃描式電子顯微鏡觀察 28 第四章 結果與討論 29 4.1微波硬化製程 29 4.2楊氏模數之田口法分析 30 4.2.1 S/N ratio 30 4.2.2因子反應分析 31 4.2.3變異數分析(ANOVA) 32 4.3拉伸強度之田口法分析 33 4.3.1 S/N ratio 33 4.3.2因子反應分析 33 4.3.3變異數分析(ANOVA) 35 4.4最佳化製程 35 4.5熱壓硬化製程 37 4.6場發射掃描式電子顯微鏡(FESEM) 37 4.7微波後處理 39 第五章 結論 43 參 考 文 獻 45 圖表 50

    [1] 馮榮豐、陳錫添,奈米工程概論,全華科技圖書股份有限公司,台灣台北,民國九十二年。
    [2] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58, 1991.
    [3] 麥富德、黃楓台、簡國明、王永銘、陳秋燕,奈米碳管專利地圖及分析,行政院國家科學委員會科學技術資料中心,台灣台北,民國九十一年。
    [4] R. F. Gibson, “Principles of Composite Material Mechanics,” McGraw-Hill, New York, 1994.
    [5] P. L. Spencer, U.S. Patent 2 605 383, 1952.
    [6] E. T. Thostenson, Z. Ren and T. W. Chou, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: a Review,” Composites Science and Technology, Vol. 61, pp. 1899-1912, 2001.
    [7] K. T. Lau and D. Hui, “The Revolutionary Creation of New Advanced Materials-Carbon Nanotube Composites,” Composites Part B: Engineering, Vol. 33, pp. 263-277, 2002.
    [8] M. M. J. Treacy, T. W. Ebbesen and T. M. Gibson, “Exceptionally high young’s modulus observed for individual carbon nanotubes,” Nature, Vol. 381, pp. 678-680, 1996.
    [9] M. F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff, “Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties,” Physical Review Letters, Vol. 84, No. 24, pp. 5552-5555, 2000.
    [10] M. F. Yu, O. Lourie, M. Dyer, K. Moloni and T. Kelly, “Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load,” Science, Vol. 287, pp. 637-640, 2000.
    [11] K. T. Lau, S. Q. Shi and H. M. Cheng, “Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures,” Composites Science and Technology, Vol. 63, pp. 1161-1164, 2003.
    [12] J. D. Fidelus, E. Wiesel, F. H. Gojny, K. Schulte and H. D. Wagner, “Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites,” Composites Part A, Vol. 36, pp. 1555-1561, 2005.
    [13] M. K. Yeh, N. H. Tai and J. H. Liu, “Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes,” Carbon, Vol. 44, pp. 1-9, 2006.
    [14] C. A. Cooper, D. Ravich, D. Lips, J. Mayer and H. D. Wagner, “Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix,” Composites Sciences and Technology, Vol. 62, pp. 1105-1112, 2002.
    [15] R. E. Gorga and R. E. Cohen, “Toughness enhancements in poly(methylmethacrylate) by addition of oriented multiwall carbon nanotubes,” Journal of Polymer Science: Part B: Polymer Physics, Vol. 42, pp. 2690-2702, 2004.
    [16] D. S. Lim, J. W. An and H. J. Lee, “Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites,” Wear, Vol. 252, pp. 512-517, 2002.
    [17] N. H. Tai, M. K. Yeh and J. H. Liu, “Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement,” Carbon, Vol. 42, pp. 2735–2777, 2004.
    [18] H. G. Chae, T. V. Sreekumar, T. Uchida and S. Kumar, “A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber,” Polymer, Vol. 46, pp. 10925-10935, 2005.
    [19] H. Guo, T.V. Sreekumar, T. Liu, M. Minus and S. Kumar, “Structure and properties of polyacrylonitrile/single wall carbon nanotube composite films,” Polymer, Vol. 46, pp. 3001-3005, 2005.
    [20] M. A. L. Manchado, L. Valentini, J. Biagiotti and J. M. Kenny, “Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing,” Carbon, Vol. 43, pp. 1499-1505, 2005.
    [21] K. T. Lau, “Interfacial bonding characteristics of nanotube/polymer composites,” Chemical Physics Letters, Vol. 307, pp. 399-405, 2003.
    [22] V. N. Bliznyuk, S. Singamaneni, R. L. Sanford, D. Chiappetta, B. Crooker and P. V. Shibaev, “Matrix mediated alignment of single wall carbon nanotubes in polymer composite films,” Polymer, Vol. 47, pp. 3915-3921, 2006.
    [23] J. Wang, Z. Fang, A. Gu, L. Xu and F. Liu, “Effect of amino-functionalization of multi-walled carbon nanotubes on the dispersion with epoxy resin matrix,” Applied Polymer Science, Vol. 100, pp. 97-104, 2006.
    [24] F. H. Hojny, M. H. G Wichmann, B. Fiedler and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study,” Composites Science and Technology, Vol. 65, pp. 2300-2313, 2005.
    [25] Y. Breton, G. Desarmot, J. P. Salvetat, S. Delpeux, C. Sinturel and F. Beguin, “Mechanical properties of multiwall carbon nanotubes/epoxy composite:influence of network morphology,” Carbon, Vol. 42, pp. 1027-1030, 2004.
    [26] K. T. Lau, M. Lu, C. K. Lam, H. Y. Cheung, F. L. Sheng and H. L. Li, “Thermal and mechanical properties of single-walled carbon nanotube bundle-reinforced epoxy nanocomposites:the role of solvent for nanotube dispersion,” Composites Science and Technology, Vol. 65, pp. 719-725, 2005.
    [27] S. L. Bai and V. Djafar, “Interfacial properties of microwave cured composites,” Composites, Vol. 26, pp. 645-651, 1995.
    [28] V. Tanrattanakul and D. Jaroendee, “Comparison between microwave and thermal curing of glass fiber–epoxy composites: effect of microwave-heating cycle on mechanical properties,” Journal of Applied Polymer Science, Vol. 102, pp. 1059-1070, 2006.
    [29] C. Nightingale and R. J. Day, “Flexural and interlaminar shear strength properties of carbon fibre/epoxy composites cured thermally and with microwave radiation,” Composites: Part A: applied science and manufacturing, Vol. 33, pp. 1021-1030, 2002.
    [30] X. Fang and D. A. Scola, “Investigation of microwave energy to cure carbon fiber reinforced phenylethynyl-terminated polyimide composites, PETI-5/IM7,” Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 37, pp. 4616–4628, 1999.
    [31] V. Tanrattanakul and K. SaeTiaw, “Comparison of microwave and thermal cure of epoxy–anhydride resins: mechanical properties and dynamic characteristics,” Applied Polymer Science, Vol. 97, pp. 1442–1461, 2005.
    [32] Y. Liu, Y. Xiao, X. Sun and D. A. Scola, “Microwave irradiation of nadic-end-capped polyimide resin (RP-46) and Glass–graphite–RP-46 Composites: cure and process studies,” Journal of Applied Polymer Science, Vol. 73, pp. 2391–2411, 1999.
    [33] S. Yoshida, T. Mitsumata and M. Sano, “Microwave enhancement of elasticity in poly(propylene)–carbon nanotube composites,” Chemistry Letters, Vol. 35, No. 3, 2006.
    [34] K. Kubota, M. Sanoand and T. Masuko, “Microwave irradiation for chemical modification of carbon nanotubes for better dispersion,” Japanese Journal of Applied Physics, Vol. 44, No. 1A, pp. 465-468, 2005.
    [35] H. Lin, H. Zhu, H. Guo and L. Yu, “Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes,” Materials Letters, Vol. 61, pp. 3547–3550, 2007.
    [36] A. Wadhawan, D. Garrett and J. M. Perez, “Nanoparticle-assisted microwave absorption by single-wall carbon nanotubes,” Applied Physics Letters, Vol. 83, No. 13, 2003.
    [37] S. Berber, Y. K. Kwon and D. Tománek, “Unusually high thermal conductivity of carbon nanotubes,” Physical Review Letters, Vol. 84, No. 20, 2000.
    [38] M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Ikuta, H. Abe and T. Shimizu, “Measuring the thermal conductivity of a single carbon nanotube,” Physical Review Letters, PRL 95, 065502, 2005.
    [39] P. Gonnet, Z. Liang, E. S. Choi, R. S. Kadambala, C. Zhang, J. S. Brooks, B. Wang and L. Kramer, “Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites,” Current Applied Physics, Vol. 6, pp. 119-122, 2006.
    [40] 吉澤正孝主編,田口式品質工程講座1-開發設計階段的品質工程,中國生產力中心,台灣台北,民國七十九年。
    [41] S. Naficy and H. Garmabi, “Study of the effective parameters on mechanical and electrical properties of carbon black filled PP/PA6 microfibrillar composites,” Composites Science and Technology, Vol. 67, pp. 3233–3241, 2007.
    [42] B. Y. Wei, S. L. Ho, F. Y. Chen and H. M. Lin, “Optimization of process parameters for preparing WO3/polyacrylonitrile nanocomposites and the associated dispersion mechanism,” Surface and Coatings Technology, Vol. 166, pp. 1-9, 2003.
    [43] M. Sharon, D. Pradhan, R. Zacharia and V. Puri, “Application of carbon nanomaterial as a microwave absorber,” Journal of Nanoscience and Nanotechnology, Vol. 5, pp. 2117-2120, 2005.
    [44] H. M. Kingston and L. B. Jassie, “Introduction to microwave sample preparation-theory and practice,” American Chemical Society, Washington DC, 1988.
    [45] 陳熹棣編譯,高週波基礎理論與應用/淬火. 微波加熱. 電漿. 超音波加工,全華科技圖書股份有限公司,台灣台北,民國八十四年。
    [46] 李輝煌,田口方法/品質設計的原理與實務/Taguchi methods/principles and practices of quality design,高立圖書有限公司,台灣台北,民國八十九年。
    [47] 田口玄一原著,陳耀茂譯,田口統計解析法,五南圖書出版股份有限公司,台灣台北,民國九十二年。
    [48] M. K. Pelosi and T. M. Sandifer原著,凌嘉華譯,用EXCEL做商用統計學,台灣西書出版社,台灣台北,民國九十年。
    [49] ASTM D638-82a, “Standard Test Method For Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1981.
    [50] FESEM JSM-6500F中文操作手冊。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE