簡易檢索 / 詳目顯示

研究生: 盧煇龍
Huei-Lung Lu
論文名稱: 利用光在接近布魯斯特角注入光學接觸砷化鎵產生高效率兆赫輻射
High-efficiency THz generation in optically-contacted GaAs with near-Brewster angle pumping
指導教授: 林凡異
Fan-Yi Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 103
中文關鍵詞: 砷化鎵兆赫信號
外文關鍵詞: GaAs, QPM, DFG, THz
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在模擬計算上分析使用入射光其入射方向在接近布魯斯角時,配合光學接觸砷化鎵此方法所產生的兆赫信號可以大量提高信號轉換效率。研究入射光入射方向和入射光極化方向對於有效非線性係數的影響。與傳統垂直入射方法相比,當入射光入射方向傾斜為66.92度,對於入射光能量表面反射率將會被降低以提高穿透率。當入射方向調整為66.92度,我們必須旋轉砷化鎵到達 33.58度才能得到最大的有效非線性係數。而在推疊每ㄧ片砷化鎵晶體過程中,所產生的空氣夾層厚度與最大的兆赫信號轉換效率及最佳效率的砷化鎵片數的影響,在此也會詳細討論計算。因此,在這篇論文中,我們提出使用橫磁場波極化方向光以接近布魯斯特角入射光學接觸砷化鎵來降低表面各片晶片的反射率。比較起垂直入射使用的方法,使用接近布魯斯特角入射光不但可以增加最佳效率的砷化鎵片數更可以增加起兆赫信號轉換效率。
    在我們的研究中,對於傳統垂直入射光學接觸砷化鎵方法的最佳效率砷化鎵片數是12層週期,而使用入射方向傾斜為66.92度的光學接觸砷化鎵方式來產生兆赫信號,最佳效率的砷化鎵片數可以提高到25層週期,比較起兆赫信號轉換效率更可以增進至少16倍。


    High-efficiency THz generation in quasi-phase matched (QPM) optically-contacted GaAs
    (OC-GaAs) with near-Brewster angle pumping is studied numerically. The effeective non-
    linear coefficients deff for different incident angles and polarization directions are inves-
    tigated. Compared with the normal incident case, reflection loss of the pump energy at
    OC-GaAs interfaces can be dramatically reduced by propagating the pump at a near-
    Brewster angle (66.92 0). At 66.92 0, a maximum effective nonlinear coefficient 0.901 d14
    with µro = 33.58 0 can be reached. The effect of the air-gap between adjacent OC-GaAs
    layers to the optimal QPM periods and e±ciency of THz generation are calculated. There-
    fore, in this paper, we propose a di®erent pumping configuration in which a TM-polarized
    wave is pumped near the Brewster angle of the OC-GaAs to reduce the reflection loss
    both from the surfaces and interfaces. Compared with the normal incident configura-
    tion used conventionally, the optimal QPM periods of the near-Brewster angle pumped
    configuration increases significantly and a large overall enhancement in the conversion
    e±ciency is achieved.
    In our study, the number of optimal QPM periods of OC-GaAs is increased significantly
    from 12 in the normal incident configuration to 25 in the near-Brewster angle pumped
    con‾guration, while the efficiency of THz generation is enhanced by more than 16 times.

    1 Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 In°uence of pump polarization direction on terahertz generation 3 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Terahertz generation in different frequency mixing . . . . . . . . . . . . . 4 2.2.1 Tunable frequency region of THz wave by di®erent period lengths 4 2.3 Deff values at different incident angle in (1 1 0) GaAs wafer . . . . . . . 6 2.3.1 Calculation of deff values . . . . . . . . . . . . . . . . . . . . . . 10 2.3.2 Deff values and polarization directions . . . . . . . . . . . . . . . 13 2.4 Deff values and TM-polarized Pump Wave at near-Brewster angle . . . . 16 2.4.1 The quantities of TM-polarized THz wave and the quantities of TE-polarized THz wave . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Terahertz radiation and optical loss in a near-Brewster angle pumped regime 26 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 Propagation of pump wave and THz generation . . . . . . . . . . . . . . 27 3.3 Optical loss in near-Brewster angle pumping case . . . . . . . . . . . . . 29 3.3.1 Fresnel loss between stacked GaAs layers . . . . . . . . . . . . . . 30 3.3.2 Absorption in GaAs crystal . . . . . . . . . . . . . . . . . . . . . 34 2 3.3.3 Water absorption of THz radiation . . . . . . . . . . . . . . . . . 38 3.3.4 E®ect of two-photon absorption on THz generation . . . . . . . . 38 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 The THz generation in the bonded layers case and the near-Brewster angle pumping case 47 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Nonlinear coupled wave equations on different frequency generation . . . 48 4.3 The THz generation with bonding GaAs layers . . . . . . . . . . . . . . . 51 4.3.1 The conversion of THz energy in di®usion bonded GaAs scheme . 52 4.3.2 The conversion of THz energy in glass bonded GaAs scheme . . . 58 4.4 Optically contacted GaAs with near-Brewster angle pumping . . . . . . . 64 4.4.1 The conversion of TE-polarized and TM-polarized THz wave in each GaAs layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4.2 The e®ects of air gap spacings on terahertz generation . . . . . . 71 4.4.3 The terahertz generation with near-Brewster angle pumped in the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5 Conclusions and future research 87 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.2.1 Optically-contacted GaAs with true-Brewster angle pumping . . 87 5.2.2 Increase the energy of pump source . . . . . . . . . . . . . . . . . 88 A Method of stacked GaAs wafers and polarization direction of pump wave 89 B The conversion efficiencies of the THz generation in the optical contact GaAs scheme 94 3 C The e®ect of incident angle on THz conversion e±ciencies 97

    [1] S. Wang and X.C. Zhanga, "Tomographic imaging with a terahertz binary lens",
    Applied Physics Letters, vol. 82, pp. 1821-1823, 2003.
    [2] P. H. Siegel, "Terahertz technology in biology and medicine", IEEE Transactions on
    Microwave Theory and Techniques, vol. 52, pp. 2438-2447, 2004.
    [3] E. R. Brown, D. L. Woolard, A. C. Samuels, T. Globus, and B. Gelmont, "Remote
    detection of bioparticles in the THz region", IEEE MTT-S Digest, vol. 3, pp. 1591-
    1594, 2002.
    [4] G.H. Ma, Q. B. Zhu, G. Kh. Kitaeva, and I. I. Naumova, "Narrow-band terahertz
    wave generation and detection in one periodically poled lithium niobate crystal",
    Optical Communication, vol. 273, pp. 549-553, 2007.
    [5] G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris,
    D. Bliss, and C. Lynch, "High-power source of THz radiation basedon orientation-
    patterned GaAs pumped by a fiber laser", Optics Express, vol. 14, pp. 4439-4444,
    2006.
    [6] D. Zheng, L. A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, R. L. Byer, and
    K. L. Vodopyanov, "16-mm infrared generation by difference-frequency mixing in
    di®usion-bonded-stacked GaAs", Optics Letters, vol. 23, pp. 1010-1012, 1998.
    [7] T. Skauli, K. L. Vodopyanov, T. J. Pinguet, A. Schober, O. Levi, L. A. Eyres, M. M.
    Fejer, J. S. Harris, B. Gerard, L. Becouarn, E. Lallier, and G. Arisholm, "Measure-ment of the nonlinear coe±cient of orientation-patterned GaAs and demonstration
    of highly efficient second-harmonic generation", Optics Letters, vol. 27, pp. 628-630,
    2002.
    [8] B. J. Perrett, P. D. Mason, P. A. Webber, S. C. Woods, and D. A. Orchard, "Optical
    parametric ampli‾cation of mid-infrared radiation using multi-layer glass-bonded
    QPM GaAs crystals", SPIE, vol. 6455, pp. 64550A-1-64550A-9, 2007.
    [9] Y. S. Lee, W. C. Hurlbut, K. L. Vodopyanov, M. M. Fejer, and V. G. Kozlov,
    "Generation of multicycle terahertz pulses via optical rectification in periodically
    inverted GaAs structures", App. Phys. Lett., vol. 89, pp. 181104-1881112, 2006.
    [10] L. Gordon, G. L. Woods, R. C. Eckardt, R. R. Route, R. S. Feigelson, M. M. Fejer,
    and R. L. Byer, "Diffusion-bonded stacked GaAs for quasiphase- matched second-
    harmonic generation of a carbon dioxide laser", Electronics Letters, vol. 29, pp.
    1942-1944, 1993.
    [11] K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.S. Lee, W. C. Hurlbut, V. G.
    Kozlov, D. Bliss, and C. Lynch "Terahertz-wave generation in quasi-phase-matched
    GaAs", Applied Physics Letters, vol. 89, pp. 1411191-1411193, 2007.
    [12] Y. J. Ding and Wei Shi, "E±cient THz generation and frequency upconversion in
    GaP crystals", Solid State Electronics, vol. 50, pp. 1128-1136, 2006.
    [13] K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B.
    Gerard, L. Becouarn, and E. Lallier, "Optical parametric oscillation in quasi-phase-
    matched GaAs", Optics Letters, vol. 29, pp. 1912-1914, 2004.
    [14] K. L. Vodopyanov, J. Schaar, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, V. G.
    Kozlov, G. Imeshev, M. E. Fermann, D. Bliss, and C. Lynch, "Tunable THz source
    based on frequency conversion in quasi-phase-matched GaAs", SPIE, vol. 6386, pp.
    63860T-1-63860T-13, 2006.
    [15] M. Nagaia, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M.
    Yoshida, "Generation and detection of terahertz radiation by electro-optical process
    in GaAs using 1.56 mm liber laser pulses", Applied Physics Letters, vol. 85, pp.
    493-494, 2004.
    [16] L. A. Eyres, "All-epitaxially orientation-patterned semicinductors for nonlinear op-
    tical frequency conversion", Copyright by Loren Alan Eyres, 2002.
    [17] M. M. Fejer, "Coherent and tunable terahertz oscillator, generation, and anpllfiers,"
    Optical Physics and Materials, vol. 11, pp. 75-97, 2001.
    [18] J. T. Wang and K. Daneshvar, "Numerical calculation of the effective second-order
    nonlinear coefficient along collinear phase-matching directions inside nonlinear crys-
    tals in three-wave interaction", Quantum Electronics, vol. 32, pp. 183-191, 1996.
    [19] T. Skauli, K. L. Vodopyanov, Q. Chen, M. Tani, Zhiping Jiang, and X.-C. Zhang,
    "Electro-optic transceivers for terahertz-wave applications", Optics Letters, vol. 18,
    pp. 823-831, 2001.
    [20] Lord Rayleigh, "A study of glass surfaces in optical contact," SPIE, vol. 156, pp.
    326-349, 1936.
    [21] E. Hecht, Optics, 4th ed. (Academic, Adelphi, 2002).
    [22] S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Josh, "Generation of megawatt-
    power terahertz pulses by noncollinear difference-frequency mixing in GaAs", Applied
    Physics Letters, vol. 98, pp. 0261011-0261013, 2005.
    [23] M. D. Dvorak, W. A. Schroeder, and D. R. Andersen, "Measurement of the
    anisotropy of two-Photon absorption coe±cients in zincblende semiconductors,"
    Quantum Electronics, vol. 30, no. 2, pp. 256-268, 1994.
    [24] L. Goldberg, J. Koplow, D. G. Lancaster, R. F. Curl, and F. K. Tittel, "Mid-infrared
    difference-frequency generation source pumped by a 1.1V1.5-mm dual-wavelength
    dual amplifier for trace-gas detection", Optics Letters, vol. 23, pp. 1517-1519, 1998.
    [25] K. L. Vodopyanov, A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C.
    Bryce, J. M. Arnold, C. R. Stanley, J. S . Aitchison, C. T. A. Brown, K. Moutzouris,
    and M. Ebrahimzadeh, "Quasi-phase-matching in GaAs-AlAs superlattice waveg-
    uides viabandgap tuning using quantum well intermixing", Optics Letters, vol. 25,
    pp. 1370-1372, 2000.
    [26] M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Wherrett,
    "Measurement of the anisotropy of two-photon absorption coe±cients in zincblende
    semiconductors ", Optics Letters, vol. 30, pp. 256-268, 1994.
    [27] R. A. Ganeev, A. I. Ryasnyansky, M. K. Kodirov, and T. Usmanov, "Two-photon ab-
    sorption and nonlinear refraction of amorphous chalcogenide ‾lms", Applied Physics
    Letters, vol. 45, pp. 207-213, 2003.
    [28] E. Lallier, L. Becouarn, M. Brevignon, and J. Lehoux, "Infrared difference frequency
    generation with quasi-phase-matched GaAs", Electronics letters, vol. 34, pp. 1609-
    1611, 1998.
    [29] O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris,
    and M. M. Fejer, "Difference frequency generation of 8 ¹m radiation in orientation-
    patterned GaAs", Optics Letters, vol. 27, pp. 2091-2093, 2002.
    [30] O. Levi, T. J. Pinguet, T. Skauli, Avetisyan, and Y. Sasaki, "Analysis of THz-wave
    surface-emitted difference-frequency generation in periodically poled lithium niobate
    waveguide", Applied Physics, vol. 73, pp. 511-514, 2001.
    [31] K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, V. G. Kozlov, and Y. S. Lee,
    "Terahertz-wave generation in periodically-inverted GaAs", CLEO, vol. 2, pp. 1450-
    1452, 2005.
    [32] Y. S. Lee, W. C. Hurlbut, K. L. Vodopyanov, M. M. Fejer, and V. G. Kozlov,
    "Coherent detection of multi-cycle terahertz pulses generated in periodically inverted
    GaAs structures," SPIE, vol. 6455, pp. 64550G-1-64550G-8, 2007.
    102
    [33] A. Szilagyi, A. Hordvik, and H. Schlossberg, "A quasi-phase-matching technique
    for e±cient optical mixing and frequency doubling," Applied Physics, vol 47, pp.
    2025-2032, 1976.
    [34] Y. J. Ding and I. B. Zotova, "Exact analytical solutions and their applications for
    interacting waves in quadratic nonlinear medium," Optics Express, vol 10, pp. 83-97,
    2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE