簡易檢索 / 詳目顯示

研究生: 李恩
Lee, Joseph
論文名稱: 以成分控制與田口實驗規劃法開發多功能之 Zr-Cu基金屬玻璃薄膜
The Exploration of Zr-Cu-based Thin Film Metallic Glass by Compositional Control and Taguchi Design of Experiment Method
指導教授: 杜正恭
Duh, Jenq-Gong
口試委員: 李志偉
Lee, Jyh-Wei
賴宏仁
Lai, Hong-Ren
吳芳賓
Wu, Fan-bean
王星豪
Wang, Shing-Hoa
楊永欽
Yang, Yung-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 184
中文關鍵詞: 金屬玻璃金屬玻璃薄膜成分控制磁控濺鍍抗菌Cu-Si擴散阻障層田口實驗設計法
外文關鍵詞: composition control, Cu-Si diffusion barrier
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬玻璃是一非晶質合金,具有優異之材料特性,諸如:高機械強度、高韌性、良好的抗腐蝕能力,以及原子級平滑的表面。然而,塊狀金屬玻璃尺寸受限於鑄造製程冷卻速率之不足。近年來,相關研究轉向利用物理濺鍍製程製備金屬玻璃薄膜。濺鍍製程之超快冷卻速率與製程參數的可調控性,使得相關研究蓬勃發展。
    本論文專注於利用直流磁控共濺鍍法與成分控制法探索Zr-Cu基金屬玻璃之基礎性質,並拓展其應用領域。研究的第一階段,選用Zr-Cu與Ni-Al兩塊合金靶材,藉由共濺鍍製程功率之調控,製備一系列不同成分之Zr-Cu-Ni-Al金屬玻璃薄膜。再經由微流量控制器通入高純度氮氣,成功參雜氮原子以製備一系列Zr-Cu-Ni-Al-N金屬玻璃薄膜。實驗結果顯示鎳、鋁原子的添加能有效提升薄膜之機械性質與熱穩定性;而氮的添加更能進一步強化機械性質與熱穩定性至Zr-Cu基金屬玻璃薄膜之最高水準。
    承襲前一部分之成分控制法,使用Ag置換Ni,製備Zr-Cu-Al-Ag-N 金屬玻璃薄膜,並嘗試將此系統應用於生醫相關領域。此氮參雜之薄膜,同樣具有優異的機械性質表現。此外,塔弗極化法分析指出,此材料系統具有優異之抗腐蝕能力。最後利用日本工業基準之規範,進行細菌培養與數盤分析,結果顯示此薄膜系統具有高達99.99%之抗菌能力。綜上所述,Zr-Cu-Al-Ag-N金屬玻璃薄膜同時兼顧機械強度、抗腐蝕性質與抗菌性質,為一多功能之薄膜材料。
    另一方面,本論文也嘗試將Zr-Cu-Ni-Al-N金屬玻璃薄膜應用於積體電路內的Cu-Si擴散阻障層。首先利用磁控濺鍍製備Si/Zr-Cu-Ni-Al-N/Cu之層狀結構,並調變阻障層之厚度。另結合低略角X-ray、ESCA縱深分析,以及HR-TEM影像觀察,對阻障層在不同工作溫度下之阻障能力做全方位之評估。最後將金屬玻璃薄膜之熱性質、微結構、膜厚與其Cu-Si擴散阻障能力進行統合。
    最後將引入田口實驗設計方法,對Zr-Cu-Ni-Al-N金屬玻璃薄膜之機械性質進行最佳化。田口實驗法,能於避免偏見的條件下,以極少實驗次數對不同控制因子進行分析。實驗將選用四個能對薄膜機械性質產生影響之因子: Zr/Cu比例、製程溫度、Ni-Al靶材功率,以及氮氣流通量。選用9次試驗之直交表,製備9組不同的薄膜並進行機械性質量測。利用平均數分析(ANOM),能評估欲使機性最佳化的控制因子水準;變異數分析(ANOVA)則能定量不同控制因子對機械性質的貢獻程度。藉由確認實驗的分析,最終成功製備一組具有15 GPa超高硬度之Zr-Cu-Ni-Al-N金屬玻璃薄膜,達成機械性質之最佳化。研究結果顯示,田口實驗設計法可望應用於物理濺鍍薄膜性質之最佳化。


    Metallic glass has attracted lots of attention over past decades, and is an amorphous material, exhibiting unique properties, such as high strength, toughness, corrosion resistance and surface roughness in atomic scale. The development of large-scale metallic glass is, however, limited by the cooling process issue. The DC magnetron sputtering process, with extremely high cooling rate, was therefore developed to fabricate the thin film metallic glass (TFMG). The simplicity of parameter manipulating of DC-sputtering boosted the development of TFMG. Recently, Zr-based metallic glass is a highly-interested topic due to the excellent glass forming ability and lower material cost.
    The aim of this study is to investigate the characteristics of Zr-Cu-based TFMG and to expand its application fields by compositional control in DC magnetron co-sputtering. With different combination of target materials in the sputtering process, various TFMG with specialized properties could be fabricated. Firstly, Ni-Al content was alloyed into Zr-Cu-based matrix to form Zr-Cu-Ni-Al TFMG until it is out of the amorphicity region. The optimal composition for the highest mechanical and thermal properties was revealed by adjusting target power of the co-sputtering process. Subsequently, the nitrogen was doped into the Zr-Cu-Ni-Al TFMG by controlling nitrogen gas flow rate during fabrication process. The ultra-high mechanical performance of Zr-Cu-Ni-Al-N is attributed to the nitrogen-centered short range order clusters and the densely-packed structure. The correlation between the composition of Zr-Cu-based TFMG and its physical properties is thus established.
    Furthermore, the feasibilities of applying Zr-Cu-based TFMG on both biomedical and microelectronics field were also demonstrated. The Zr-Cu-Al-Ag-N TFMG, simultaneously exhibiting superior mechanical properties, corrosion resistance, and antimicrobial capability, is fabricated. The microbe culture experiment and plate counting analysis show that the Zr-Cu-Al-Ag-N TFMG shows over 99.99% antimicrobial ability. The superior antimicrobial performance could be attributed to the ultra-smooth, hydrophobic surface and the release of Ag, Cu ions from the coating. On the other hand, the Zr-Cu-Ni-Al-N TFMG was applied as the diffusion barrier for Cu and Si. The barrier performance at various temperature was quantitatively evaluated. Further, the correlation between microstructure, thermal properties, thickness and barrier performance of the TFMG will be revealed and established. It is demonstrated that the TFMG barrier could effectively retard the Cu-Si inter-diffusion and the formation of Cu3Si intermetallic compound when the annealing temperature is below Tx.
    Last but not least, the Taguchi Design of Experiment (DOE) method was introduced to optimize the mechanical properties of Zr-Cu-Ni-Al-N TFMG. Taguchi method has been widely used to resolve engineering problems in the industry. The major advantage of Taguchi method is to figure out the effects of multiple controlling parameters and the corresponding quality characteristics with largely-reduced experimental trails. Four controlling parameters: Zr/Cu ratio, process temperature, Ni-Al target power, and nitrogen flow rate were selected. Based on Taguchi’s Orthogonal Array, only nine experiments were needed. The optimal combination of controlling parameters was analyzed by analysis of mean (ANOM), and the sensitivity of each parameter was quantitatively evaluated by analysis of variance (ANOVA). Finally, the Zr-Cu-based TFMG with highest hardness of 15 GPa were successfully fabricated. It is demonstrated that the Taguchi method could be successfully applied to optimize the fabrication process of sputtering. The complex relationship within various variables could be efficiently integrated and analyzed. The results reveal the feasibility and efficiency of applying Taguchi method to optimize a specific property of TFMG or other material system fabricated by physical vapor deposition.

    Contents…………………………………...………………………………I List of Tables…………………………………………………......……...IX Figures Caption……..…………………………………………………...XI Abstract…………………………………...…………………………XVIII Chapter 1 Introduction………....................................................................1 1.1 Background………………………………………..……………..1 1.2 Motivations and Objectives………………………….…………..3 1.3 Thesis Overview……………………………………….………...5 Chapter 2 Literature Review……….........................................................10 2.1 Bulk Metallic Glass…………………………………………..…10 2.1.1 Crystalline and Amorphous……………………………....10 2.1.2 History of Metallic Glass…………………………...…....10 2.1.3 Glass Forming Ability of Metallic Glass………………....12 2.1.4 Inoue’s Empirical Rules of Metallic Glass…………….....13 2.1.5 Unique Properties of Metallic Glass……..…………….....14 2.1.6 Atomic Structure of Metallic Glass………………….…....15 2.1.7 Zr-based Metallic Glass…………………………….….....17 2.2 Thin Film Metallic Glass……………………………………..…30 2.2.1 Principles of Plasma……………………...........................30 2.2.2 Sputtering……………………………………….……......31 2.2.3 Magnetron Sputtering………………….………….……...32 2.2.4 DC Sputtering…………………………………….……....32 2.2.5 Reactive Magnetron Sputtering…...……………...……....33 2.2.6 Microstructure of Thin Film Deposition………………….34 2.2.7 Zr-based Metallic Glass…………………………….….....35 2.2.8 Zr-based Thin Film Metallic Glass……………………….36 2.2.9 Antimicrobial TFMG Coatings………………….….….....38 2.2.10 Potential of TFMG as Cu-Si Diffusion Barrier.….……...39 2.3 Taguchi Methodology………………………………………..…52 2.3.1 Design of Experiment Methods………..............................52 2.3.2 Taguchi Design of Experiment Method…...…….……......53 2.3.3 Analysis of Mean (ANOM)………....................................55 2.3.4 Analysis of Variance (ANOVA)…...…….……..................57 2.4 Thin Film Properties Characterization………………………..…66 2.4.1 Composition Analysis………............................................66 2.4.2 Nano-indentation Analysis…...…….…….........................67 2.4.3 Nano-scratch Analysis………............................................69 2.4.4 Differential Scanning Calorimetry…...………..................70 2.4.5 Depth Profile Analysis………............................................71 2.4.6 Transmission Electron Microscopy…...…….……............72 Chapter 3 Experimental Procedures...……...............................................76 3.1 Substrate Preparation………………….……………………..…76 3.1.1 Grinding and Polishing of Substrates……………….…....76 3.1.2 Cleaning of the samples…………………………….….....76 3.2 Thin Film Deposition by Sputtering…..……………………..….77 3.2.1 Grinding and Polishing of Substrates……………….…....77 3.2.2 Cleaning of the samples…………………………….….....77 3.2.3 Deposition of Zr-Cu-Al-Ag-N coatings……………..…....78 3.2.4 Fabrication of Si/TFMG/Cu Stack Structure……….….....79 3.2.5 Zr-Cu-Ni-Al-N Coatings for Taguchi DOE……………....80 3.3 Characterization and Analysis…..…………………..………..…82 3.3.1 Composition Analysis……………………………....…....82 3.3.2 Phase Identification…………………………….…….......82 3.3.3 Thermal Property Measurement…………………….…....82 3.3.4 Mechanical Property Measurement………………...….....83 3.3.5 Surface Characterization………………………...….…....83 3.3.6 Adhesion Strength and Toughness Evaluation……….......84 3.3.7 Corrosion Resistance Evaluation…………………...…....84 3.3.8 Antimicrobial Test………..................................................85 3.3.9 Microstructural Analysis…………….……………...…....86 3.3.10 Antimicrobial Test………................................................86 Chapter 4 Results and Discussion……….................................................94 4.1 Applying Composition Control to Improve the Mechanical and Thermal Properties of Zr-Cu-Ni-Al Thin Film Metallic Glass by Magnetron DC Sputtering……………………..……………………94 4.1.1 Composition and Microstructure Analysis…………….....94 4.1.2 Thermal Properties Analysis……………….……….….....95 4.1.3 Mechanical Properties Evaluation…………….……….....96 4.2 Enhancement of Mechanical and Thermal Properties in Zr-Cu-Ni-Al-N Thin Film Metallic Glass by Composition Control of Nitrogen……………..……………..……………….……..………106 4.2.1 Composition and Microstructure Analysis……………...106 4.2.2 Thermal Properties Analysis……………….……….…...107 4.2.3 Relationship of Mechanical and Thermal Property….….108 4.2.4 Microstructure Observation….………………………….108 4.3 The Development of Zr-Cu-Al-Ag-N TFMG in Pursuit of Improved Mechanical Performance, Corrosion Resistance, and Antimicrobial Property for Bio-medical Application…………...…117 4.3.1 Composition and Microstructure Analysis……………...117 4.3.2 Thermal Properties Analysis……………….……….…...118 4.3.3 Mechanical Properties Measurement……………..….….119 4.3.4 Anti-Corrosion Properties Evaluation….……………….120 4.3.5 Antimicrobial Test and Mechanisms….……..………….122 4.4 Structural Evolution of Zr-Cu-Ni-Al-N Thin Film Metallic Glass and Its Diffusion Barrier Performance in Cu-Si Interconnect at Elevated Temperature……………………………...…………...…137 4.4.1 Characterization of TFMG Barrier……………………...137 4.4.2 Grazing Angle X-ray Diffraction Analysis……...….…...138 4.4.3 ESCA Elemental Depth Profile Analysis…….…..….….139 4.4.4 HR-TEM Microstructure Observation….……………….140 4.4.5 Mechanisms TFMG Diffusion Barrier….……………….141 4.5 Improving Mechanical Performance on Zr-Cu-Ni-Al-N thin film metallic glass by Taguchi Design of Experiment Method…………149 4.5.1 Composition and Mechanical Properties of Samples Based on Orthogonal Array……………………...…………………...149 4.5.2 ANOM for Samples Based on Orthogonal Array…..…...150 4.5.3 ANOVA for Samples Based on Orthogonal Array……....152 4.5.4 Single-Variable Experiment by Tuning Nitrogen Flow Rate…………………………………………………………...153 Chapter 5 Conclusions………................................................................168 Reference................................................................................................171 Publication List.......................................................................................184

    [1] C.W. Chu, Jason S.C. Jang, S.M. Chiu, J.P. Chu, Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process, Thin Solid Films 517 (2009) 4930.
    [2] A. Inoue, Bulk amorphous and nanocrystalline alloys with high functional properties, Mater. Sci. Eng., A 304–306 (2001) 1.
    [3] W.H. Wang, Bulk Metallic Glasses with Functional Physical Properties, Adv. Mater. 21 (2009) 4524.
    [4] A. Inoue, A. Takeuchi, Recent development and application products of bulk glassy alloys, Acta Mater. 59 (6) (2011) 2243.
    [5] C.J. Chen, J.C. Huang, H.S. Chou, Y.H. Lai, L.W. Chang, X.H. Du, J.P. Chu, T.G. Nieh, On the amorphous and nanocrystalline Zr–Cu and Zr–Ti co-sputtered thin films, J. Alloys Compd. 483 (2009) 337.
    [6] H.S. Chou, J.C. Huang, L.W. Chang, Surf. Coat., Mechanical properties of ZrCuTi thin film metallic glass with high content of immiscible tantalum, Technol. 205 (2010) 587.
    [7] J.P. Chu, C.M. Lee, R.T. Huang, P.K. Liaw, Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects, Surf. Coat. Technol. 205 (2011) 4030.
    [8] J.P. Chu, J.S.C. Jang, J.C. Huang, H.S. Chou, Y. Yang, J.C. Ye, Y.C.Wang, J.W. Lee, F.X. Liu, P.K. Liaw, Y.C. Chen, C.M. Lee, C.L. Li, C. Rullyani, Thin film metallic glasses: Unique properties and potential applications, Thin Solid Films 520 (2012) 5097.
    [9] D. Hofmann, H. Kozachkov, H. Khalifa, J. Schramm, M. Demetriou, K. Vecchio, and W. Johnson, Semi-solid Induction Forging of Metallic Glass Matrix Composites, JOM 61 (2009) 11
    [10] Pao-Sheng Chen, Hsien-Wei Chen, Jenq-Gong Duh, Jyh-Wei Lee, Jason Shian-Ching Jang, Characterization of mechanical properties and adhesion of Ta–Zr–Cu–Al–Ag thin film metallic glasses, Surf. Coat. Technol. 231 (2013) 332
    [11] Q. Wang, J.B. Qiang, J.H. Xia, J. Wu, Y.M. Wang, C. Dong, Cu–Zr–Al (Ti) bulk metallic glasses: Cluster selection rules and glass formation, Intermetallics 15 (2007) 711.
    [12] C.W. Chu, J.S.C. Jang, G.J. Chen, S.M. Chiu, Characteristic studies on the Zr-based metallic glass thin film fabricated by magnetron sputtering process, Surf. Coat. Technol. 202 (2008) 5564.
    [13] J.P. Chu, C.M. Lee, R.T. Huang, P.K. Liaw, Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects, Surf. Coat. Technol. 205 (2011) 4030.
    [14] Y.H. Li, W. Zhang, C. Dong, J.B. Qiang, M. Fukuhara, A. Makino, A. Inoue, Effects of Ni addition on the glass-forming ability, mechanical properties and corrosion resistance of Zr–Cu–Al bulk metallic glasses, Mater. Sci. Eng. A 528 (2011) 8551.
    [15] F.X. Liu, P.K. Liaw, W.H. Jiang, C.L. Chiang, Y.F. Gao, Y.F. Guan, J.P. Chu, P.D. Rack, Fatigue-resistance enhancements by glass-forming metallic films, Mater. Sci. Eng., A 468–470 (2007) 246.
    [16] J.S.C. Jang, Y.W. Chen, L.J. Cheng, H.Z. Cheng, J.C. Huang, C.Y. Tsao, Crystallization and fracture behavior of the Zr65−xAl7.5Cu17.5Ni10Six bulk amorphous alloys, Mater. Chem. Phys. 89 (2005) 122.
    [17] J. H. Chu, H. W Chen, Y. C. Chan, J. G. Duh, J. W. Lee, J. S. C. Jang, Modification of structure and property in Zr-based thin film metallic glass via processing temperature control, Thin Solid Films, 561 (2014) 38.
    [18] H.W. Chen, K.C. Hsu, Y.C. Chan, J.G. Duh, J.W. Lee, Jason S.C. Jang, G.J. Chen, Antimicrobial properties of Zr–Cu–Al–Ag thin film metallic glass, Thin Solid Films 561 (2014) 98.
    [19] C. S. Chen, C. P. Liu, Diffusion barrier properties of amorphous ZrCN films for copper metallization, J. Non-cryst. Solids 351 (2005) 3725
    [20] J. S. Chen, J. Wang, Multilayer diffusion barrier for copper metallization using a thin interlayer metal (M=Ru, Cr, and Zr) between two TiN films, J Electrochem. Soc. 147 (2000) 1940.
    [21] C. W. Wang, P. Yiu, Jinn P. Chu, C.H. Shek, C.H. Hsueh, Thin film metallic glass as a diffusion barrier for copper indium gallium selenide solar cell on stainless steel substrate: A feasibility study, J. Mater. Sci. 50 (2015) 2085.
    [22] M. Apreutesei, P. Steyer, L. Joly-Pottuz, A. Billard, J. Qiao, S. Cardinal, F. Sanchette, J.M. Pelletier, C. Esnouf, Microstructural, thermal and mechanical behavior of co-sputtered binary Zr-Cu thin film metallic glasses, Thin Solid Films, 561 (2014) 53.
    [23] http://www.liquidmetal.com/properties/the-science/
    [24] A. Brenner, D.E. Couch and E.K. Williams, Electrodeposition of alloys of phosphorus with nickel or cobalt, J. Res. Natl. Bur. Stand. 44 (1950) 109.
    [25] W. Klement, R.H. Willens, P. Duwez, Non-crystalline Structure in Solidified Gold-Silicon Alloys, Nature 187 (1960) 869.
    [26] H. S. Chen and C. E. Miller, Roller‐plate technique for preparing uniform thin films from the melt, Rev. Sci. Instrum. 41 (1970) 1237.
    [27] R.W. Cahn, Rapidly solidified alloys: processes, structures, properties, applications, Marcel Dekker, New York, 1993, pp.1.
    [28] W. H. Kui, A.L. Greer, D. Turnbull, Formation of bulk metallic glass by fluxing, Appl. Phys. Lett. 45 (1984) 615.
    [29] Z. P. Lu, and C. T. Liu, Glass Formation Criterion for Various Glass-Forming Systems, Phys. Rev. Lett. 91 (2003) 115505.
    [30] Inoue, K. Ohtera, K. Kita and T. Masumoto, New Amorphous Al-Y, Al-La and Al-Ce Alloys Prepared by Melt Spinning, Jpn. J. Appl. Phys. 27 (1988) L2248.
    [31] X. H. Lin and W. L. Johnson, Formation of Ti–Zr–Cu–Ni bulk metallic glasses, J. Appl. Phys. 78 (1995) 6514.
    [32] A. Inoue, T. Zhang, T. Itoi and A. Takeuchi, Recent Progress in Bulk Glassy Alloys, Mater. Trans., JIM 38 (1997) 359.
    [33] T. Zhang and A. Inoue, Thermal and Mechanical Properties of Ti-Ni-Cu-Sn Amorphous Alloys with a Wide Supercooled Liquid Region before Crystallization, Mater. Trans., JIM 39 (1998) 1001.
    [34] A. Inoue, T. Zhang and T. Masumoto, Zr-Al-Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region, Mater. Trans., JIM 31 (1990) 177.
    [35] R. Akatsuka, T. Zhang, M. Koshiba and A. Inoue, Formation and Mechanical Properties of Bulk Glassy Ni57-xTi23Zr15Si5Pdx Alloys, Mater. Trans., JIM 40 (1999) 258.
    [36] A. Inoue, N Nishiyama and T. Matsuda, Preparation of Bulk Glassy Pd40Ni10Cu30P20 Alloy of 40 mm in Diameter by Water Quenching, Mater. Trans., JIM 37 (1996) 181.
    [37] A. Inoue and N Nishiyama, Molecular Dynamics Study of Glass-Forming Ability of Zr-Based Metallic Glasses, Mater. Sci. Eng. 401 (1997) A226.
    [38] J. F. Löffler, Bulk metallic glasses, Intermetallics 11(2003) 529.
    [39] A. Inoue, Bulk Amorphous Alloys Practical Characteristics and Applications, Materials Science Foundations, Vol. 4, Trans Tech Publications, 1999.
    [40] W. H. Wang, C. Dong, C. H. Shek, Bulk metallic glasses, Mater. Sci. Eng. 44 (2004) 45.
    [41] H. S. Chen, D. Turnbull, Formation, stability and structure of palladium-silicon based alloy glasses, Acta Metall. 17 (1969) 1021.
    [42] A. Zhu, S. J. Poon, G. J. Shiflet, Glass forming ranges of Al–rare earth metal alloys: thermodynamic and kinetic analysis, Scri. Mater. 50 (2004) 987.
    [43] A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000) 279.
    [44] A. Inoue, Recent Progress in Bulk Glassy Alloys, Mater. Sci. Eng. A304-306 (2001) 1.
    [45] A. Inoue, T. Zhang, and T. Masumoto, Preparation of Bulky Amorphous Zr-Al-Co-Ni-Cu Alloys by Copper Mold Casting and Their Thermal and Mechanical Properties, Mater. Trans. JIM 36 (1995) 391.
    [46] K. Asami, H. Habazaki, A. Inoue, and K. Hashimoto, Recent Development of Highly Corrosion Resistant Bulk Glassy Alloys, Mater. Sci. Forum 502 (2005) 225.
    [47] J. P. Chu, H. Wijaya, C. W. Wu, T. R. Tsai, C. S. Wei, T. G. Nieh, and J. Wadsworth, Temperature dependence of the thermoplastic formability in bulk metallic glasses, Appl. Phys. Lett. 90 (2007) 034101.
    [48] A. Inoue, T. Negishi, H. M. Kimura, T. Zhang, A. R. Yavari, Bulk Amorphous Alloys, Mater. Trans. J. Immunol. Methods. 39 (1998) 318.
    [49] M. W. Chen, I. Dutta, T. Zhang, I. Inoue, T. Sakurai, Redistribution of alloying elements in quasicrystallized Zr65Al7.5Ni10Cu7.5Ag10 bulk metallic glass, Appl. Phys. Lett. 79 (2001) 42.
    [50] F. Spaepen, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Met. 25 (1977) 407.
    [51] T. Egami, Formation and deformation of metallic glasses: Atomistic theory, Intermetallics 14 (2006) 882.
    [52] P. Murali and U. Ramamurty, Embrittlement of a bulk metallic glass due to sub-Tg annealing, Acta Mater. 53 (2005) 1467.
    [53] A. Zhu, G. J. Shiflet, Scri, D. B. Miracle, Glass forming ranges of Al–rare earth metal alloys: thermodynamic and kinetic analysis, Script. Mater. 50 (2004) 987.
    [54] M. W. Chen, Mechanical behavior of metallic glasses-microscopic understanding of strength and ductility, Annu. Rev. Mater. Res. 38 (2008) 14.1.
    [55] D. Arias, J. P. Abriata, Cu-Zr (Copper-Zirconium), Bulletin of Alloy Phase Diagrams 1990; 11:452.
    [56] C. A. Schuh, T. C. Hufnagel, U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater. 55 (2007) 4067
    [57] A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. T. JIM, 46 (2005) 2817.
    [58] Y. Q. Cheng, E. Ma, H. W. Sheng, Atomic Level Structure in Multicomponent Bulk Metallic Glass, Phys. Rev. Lett. 102(2009) 245501.
    [59] R. Behrisch Ed, Sputtering by particle bombardment, 1981, Springer Berlin Heidelberg, Berlin, Germany.
    [60] P. D. Toensend, J. C. Kelly, Ion implantation: Sputtering and their applications, Academic Press, 1976.
    [61] M. Ohring Ed., The materials science of thin films, Academic Press, London, UK, 1992.
    [62] http://www.directvacuum.com/sputter.asp
    [63] R. F. Bunshah Ed, Handbook of Hard Coatings, 2001, Noyes Publications, Park Ridge, USA.
    [64] B. Y. Shew, J. L. Huang, and D. F. Lii, Effects of R.F. bias and nitrogen flow rate on the reactive sputtering of TiAlN films, Thin Solid Films, 293 (1997) 212.
    [65] J. A. Thornton, High rate thick film growth, Ann. Rev. Mater. Sci. 7 (1977) 239.
    [66] J. A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topology of thick sputtered coatings, J. Vac. Sci. Technol., 11 (1974) 666.
    [67] J. Venables, Nucleation and Growth of Thin Films, Rep. Phys. 47 (1984) 399.
    [68] C. Suryanarayana and A. Inoue, Bulk Metallic Glass, CRC, Florida, 2010.
    [69] Y. Liu, S. Hata, K. Wada, A. Shimokohbe, Proceedings of the 14th IEEE International Conference on Micro Electro and Mechanical Systems; Interlaken, Switzerland, (2001) 37.
    [70] C. L. Chiang, J. P. Chu, F. X. Liu, P. K. Liaw, R. A. Buchanan, A 200nm thick glass-forming metallic film for fatigue-property enhancements, Appl. Phys. Lett., 88 (2006) 131902.
    [71] F. X. Qin, M. Yoshimura, X. M. Wang, S. L. Zhu, A. Kawashima, K. Asami, A. Inoue, Corrosion Behavior of a Ti-Based Bulk Metallic Glass and Its Crystalline Alloys, Mater. Trans., 28 (2007) 1855.
    [72] J. J. Oak, A. Inoue, Attempt to develop Ti-based amorphous alloys for biomaterials, Mater. Sci. Eng., 449 (2007) 220.
    [73] P. S. Chen, H. W. Chen, J. G. Duh, J. W. Lee, J. S. C. Jang, Mechanical and thermal behaviors of nitrogen-doped Zr-Cu-Al-A-Ta: an alternative class of thin film metallic glass, Appl. Phys. Lett. 101 (2012) 181902.
    [74] Y. L. Deng, J. W. Lee, B. S. Lou, J. G. Duh, J. P. Chu, J. S. C. Jang, The fabrication and property evaluation of Zr-Ti-B-Si thin film metallic glass materials, Surf. Coat. Technol. 259 (2014) 115.
    [75] C. Y. Chuang, J. W. Lee, C. L. Li, J. P. Chu, Mechanical properties study of a magnetron sputtered Zr-based thin film metallic glass, Surf. Coat. Technol. 215 (2013) 312.
    [76] P. C. Wang, J. W. Lee, Y. C. Yang, B. S. Lou, Effects of silicon contents on the characteristics of Zr-Ti-Si-W thin film metallic glasses, Thin Solid Films 618 (2016) 28.
    [77] B. Gottenbos, H. C. van der Mei, F. Klatter, D. W. Grijpma, J. Feijen, P. Nieuwenhuis, H. J. Busscher, Positively charged biomaterials exert antimicrobial effects on gram-negative bacilli in rats, Biomaterials 24 (2003) 2707.
    [78] E. W. Koneman, S. D. Allen, W. M. Janda, P. C. Schrechenberger, W. C. Winn Jr., Color Atlas & Textbook of Diagnostic Microbiology, Lippincott Williams & Wilkins, Philadelphia, 1997.
    [79] J. O. Noyce, H. Michels, C. W. Keevil, Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment, J. Hosp. Infect. 63 (3) (2006) 289.
    [80] P. T. Chiang, G. J. Chen, S. R. Jian, Y. H. Shih, J. S. C. Jang, C. H. Lai, Surface Antimicrobial Effects of Zr61Al7.5Ni10Cu17.5Si4 Thin Film Metallic Glasses on Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii and Candida albicans, Fooyin J. Health Sci. 2 (1) (2010) 12.
    [81] J. H. Chu, J. Lee, C. C. Chang, Y. C. Chan, M. L. Liou, J. W. Lee, J. S. C. Jang, J. G. Duh, Antimicrobial characteristics in Cu-containing Zr-based thin film metallic glass, Surf. Coat. Technol. 259 (2014) 87.
    [82] Y. Y. Chu, Y. S. Lin, C. M. Chang, J. K. Liu, C. H. Chen, J. C. Huang, Promising antimicrobial capability of thin film metallic glasses, Mater. Sci. Eng. C 36 (2014) 221.
    [83] K. S. Gadre, T. L. Alford, J. W. Mayer, Use of TiN(O)/Ti as an effective intermediate stress buffer and diffusion barrier for Cu/parylene-n interconnects, Appl. Phys. Lett. 79 (2001) 3260.
    [84] L. C. Leu, D. P. Norton, L. Mc Elwee-White, T. J. Anderson, Ir∕TaN as a bilayer diffusion barrier for advanced Cu interconnects, Appl. Phys. Lett. 92 (2008) 111917.
    [85] S. Y. Chang, C. E. Li, S. C. Chiang, and Y. C. Huang, 4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects, J. Alloy Compd. 515 (2012) 4.
    [86] M. A. Nicolet, Ternary amorphous metallic thin films as diffusion barriers for Cu metallization, Appl. Surf. Sci., 91 (1995) 269.
    [87] H. Yan, Y. Y. Tay, M. H. Liang, Z. Chen, C. M. Ng, J. S. Pan, H. Xu, C. Liu, V. V. Silberschmidt, 11th Electronics Packaging Technology Conference, (2009) 567.
    [88] Y. Meng, Z. X. Song, J. H. Chen, F. Ma, Y. H. Li, J. F. Wang, C. C. Wang, K. W. Xu, Ultrathin ZrBxOy films as diffusion barriers in Cu interconnects, Vacuum 119 (2015) 1.
    [89] J. P. Chu, J. C. Huang, Jason S. C. Jang, Y. C. Wang, P. K. Liaw, Thin film metallic glasses: Preparations, properties, and applications, JOM 62 (2010) 19.
    [90] J. Lee, H. C. Tung, J. G. Duh, Enhancement of mechanical and thermal properties in Zr–Cu–Ni–Al–N thin film metallic glass by compositional control of nitrogen, Mater. Lett. 159 (2015) 369.
    [91] W. Diyatmika, L. Xue, T. N. Lin, C. W. Chang, J. P. Chu, Thin film metallic glass as a diffusion barrier for copper indium gallium selenide solar cell on stainless steel substrate: A feasibility study. Jpn. J. Appl. Phys., 55 (2016) 8.
    [92] H. H. Lee, Taguchi Methods: Principles and Practices of Quality Design, Gau-Lih Book Co. Ltd., Taipei, Taiwan, 2011, Chapter. 3, P. 94.
    [93] G. Taguchi, Introduction to Quality Engineering: Designing Quality into Products and Processes, UNIPUB, 1986.
    [94] G. Taguchi, S. Konishi, Orthogonal Arrays and Liner Graphs: Tools for Quality Engineering, American Supplier Institute, Inc., 1987.
    [95] M.S. Phadke, Quality Engineering Using Robust Design, Prentice-Hall, Englewood Cliffs, NJ, 1989, Appendix C, P. 277.
    [96] H. H. Lee, Taguchi Methods: Principles and Practices of Quality Design, Gau-Lih Book Co. Ltd., Taipei, Taiwan, 2011, Chapter. 4.1, P. 198.
    [97] H. H. Lee, Taguchi Methods: Principles and Practices of Quality Design, Gau-Lih Book Co. Ltd., Taipei, Taiwan, 2011, Chapter. 4.3, P. 205.
    [98] M.S. Phadke, Quality Engineering Using Robust Design, Prentice-Hall, Englewood Cliffs, NJ, 1989, Chapter 3, P. 41.
    [99] W. Y. Fowlkes, C.M. Creveling, Engineering Methods for Robust Product Design: Using Taguchi Methods in Technology and Product Development, Addison-Wesley, 1996, Chapter 17, P.312.
    [100] H. H. Lee, Taguchi Methods: Principles and Practices of Quality Design, Gau-Lih Book Co. Ltd., Taipei, Taiwan, 2011, Chapter. 5, P. 249.
    [101] W.J. Chou, C.H. Sun, G.P. Yu, J.H. Huang, Optimization of the deposition process of ZrN and TiN thin films on Si(1 0 0) using design of experiment method, Mater. Chem. Phys., 82 (2003) 228.
    [102] https://serc.carleton.edu/research_education/geochemsheets/techniques/EPMA.html
    [103] Q. S. Zhang, W. Zhang, and A. Inoue, Preparation of Cu36Zr48Ag8Al8 Bulk Metallic glass with a Diameter of 25 mm by Copper Mold Casting, Mater. Trans. 48 (2007) 629.
    [104] D. G. Kim, T. Y. Seong, and Y. J. Baik, Oxidation behavior of TiN/AlN multilayer films prepared by ion beam-assisted deposition, Thin Solid Films 397 (2001) 203.
    [105] W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (1992) 1564.
    [106] M. J. Laugier, Adhesion of TiC and TiN coatings prepared by chemical vapour deposition on WC-Co-based cemented carbides, J. Mater. Sci. 21 (1986) 2269.
    [107] P. R. Chalker, S. J. Bull, and D. S. Rickerby, A review of the methods for the evaluation of coating-substrate adhesion, Mater. Sci. Eng. A 140 (1991) 583.
    [108] S. Zhang, D. Sun, Y. Fu, and H. Du, Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiNya-SiNx thin films, Thin Solid Films 447-448 (2004) 462.
    [109] G. W. H. Hohne, W. F. Hemminger, and H. J. Flasmmersheim, Differential Scanning Calorimetry, Springer, Berlin, 2003.
    [110] J. F. Watts, and J. Wolstenholme, An introduction to surface analysis by XPS and AES, 2003, John Wiley, New York, USA.
    [111] D. B. Williams, C. Barry Carter, Transmission Electron Microscopy, 2nd ed. Plenum Press, New York, 2009.
    [112] V. S. Sastri, Corrosion Inhibitors-Principles and Applications, Chichester, 1998.
    [113] JIS Z2801: 2000, Antimicrobial Products-Test for Antimicrobial Activity and Efficacy, Japanese Industrial Standard, 2001.
    [114] A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies, Dover, New York, 1994.
    [115] A. Caron, R. Wunderlich, D. V. Louzquine-Luzgin, G. Xie, A. Inoue, H. J. Fecht, Influence of minor aluminum concentration changes in zirconium-based bulk metallic glasses on the elastic, anelastic, and plastic properties, Acta Mater. 58 (2010) 2004.
    [116] T.C. Hufnagel, S.Brennan, Short-and medium-range order in (Zr70Cu20Ni10)90−xTaxAl10 bulk amorphous alloys, Phys. Rev. B 67 (2003) 014203.
    [117] F. Zeng, Y. Gao, L. Li, D. M. Li, F. Pan, Elastic modulus and hardness of Cu-Ta amorphous films, J. Alloys Compd. 389 (2005) 75.
    [118] Z. Zhu, H. Zhang, Z. Hu, W. Zhang, and A. Ioune, Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity, Scripta Mater. 62, (2010) 278.
    [119] Suzuki, J. Haimovich, and T. Egami, Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction, Phys. Rev. B 35 (1987) 2162.
    [120] N. Kuo, H. M. Chen, X. H. Du, and J. C. Huang, Flow serrations and fracture morphologies of Cu-based bulk metallic glasses in energy release perspective, Intermetallics 18 (2010) 1648.
    [121] J. J. Lewandowski and A. L. Greer, Temperature rise at shear bands in metallic glasses, Nat. Mater. 5 (2006) 15.
    [122] S. Takenchi and K. Edakawa, Atomistic simulation and modeling of localized shear deformation in metallic glasses, Prog. Mater. Sci. 56 (2011) 785.
    [123] H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, and E. Ma, Atomic packing and short-to-medium-range order in metallic glasses, Nature 439, 419 (2006).
    [124] J. Lee, K.H. Huang, K.C. Hsu, H.C. Tung, J.W. Lee, J.G. Duh, Applying composition control to improve the mechanical and thermal properties of Zr–Cu–Ni–Al thin film metallic glass by magnetron DC sputtering, Surf. Coat. Technol. 278 (2015) 132.
    [125] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nano-composite coating approach to optimised tribological behavior, Wear 246 (2000) 1.
    [126] L. T. Chen, J. W. Lee, Y. C. Yang, B. S. Lou, C. L. Li, J. P. Chu, Microstructure, mechanical and anti-corrosion property evaluation of iron-based thin film metallic glasses, Surf. Coat. Technol. 260 (2014) 46.
    [127] N. Padhy, S. Ningshen, U. Kamachi Mudali, Electrochemical and surface investigation of zirconium based metallic glass Zr59Ti3Cu20Al10Ni8 alloy in nitric acid and sodium chloride media J. Alloys Compd. 503 (1) (2010) 50.
    [128] C. Qin, K. Asami, H. Kimura, W. Zhang, A. Inoue, Electrochemical and XPS studies of Ni-based metallic glasses in boiling nitric acid solutions, Electrochim. Acta 54 (5) (2009) 1612.
    [129] I.M. Sadiq, B.Chowdhury, N. Chandrasekaran, A. Mukherji, Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles, Nanomed. Nanotechnol. 5 (2009) 282.
    [130] G. Borkow, J. Gabbay, Copper, an ancient remedy returning to fight microbial, fungal and viral infections, Curr. Chem. Biol. 3 (2009) 272.
    [131] J. L. Clement, P.S. Jarrett, Antibacterial Silver, Metal-Based Drugs 1 (1994) 467.
    [132] M.F. Copeland, D.B. Weibel, Bacterial swarming: a model system for studying dynamic self-assembly, Soft Matter 5 (2009) 1174.
    [133] G. Borkow, J. Gabbay, Copper as a biocidal tool, Curr. Med. Chem. 12 (2005) 2163.
    [134] G. Grass, C. Rensing, M. Solioz, Metallic copper as an antimicrobial surface, Appl. Environ. Microbiol. 77 (2011) 1541.
    [135] M. Rai, A. Yadav, A. Gade, Silver nanoparticles as a new generation of antimicrobials, Biotechnol. Adv. 27 (2009) 76.

    QR CODE