簡易檢索 / 詳目顯示

研究生: 李昌珉
Li, Chang-Min
論文名稱: 以網版印刷及化學蝕刻方式製作具有局部背表面場之多晶矽太陽能電池
Fabrication of Multicrystalline Silicon Solar Cells with Local Rear Contacts by Using Screen-Printing and Chemical Etching Method
指導教授: 王立康
Wang, Li-Karn
口試委員: 張正陽
Chang, Jenq-Yang
何文章
Ho, Wen-Jeng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 68
中文關鍵詞: 多晶矽太陽能電池網版印刷化學蝕刻局部背表面場
外文關鍵詞: Multicrystalline, Solar Cells, Screen-Printing, Chemical Etching, Local Rear Contacts
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗研究分為三部分;第一,分別討論不同燒結溫度與時間,對多晶矽太陽電池的效率參數影響。 本實驗使用正面銀漿網版印刷以及背面鋁漿網版印刷分別以780℃15秒、20秒、25秒、30秒以及750℃、780℃、800℃、820℃25秒用方形高溫爐進行高溫共燒結,在高溫燒結下背鋁電極會形成一背表面電場(BSF)增加電子電洞對的收集率,並降低接觸電阻,探討不同燒結條件下產生的BSF厚度與效率特性參數的關係。而此部分實驗結果顯示780℃25秒為本實驗最佳的燒結條件。
    第二,討論PERL結構多晶矽太陽電池背表面沉積的不同氮化矽薄膜厚度以及不同FGA退火溫度對太陽電池的鈍化效果。此部分實驗使用國家奈米實驗中新(NDL)的機台PECVD沉積氮化矽薄膜沉積厚度分別為130 nm、140 nm、150 nm以及國立中央大學微光電實驗室的爐管通入95%氮氣與5%氫氣分別使用350℃、375℃、400℃10分鐘進行鈍化層進一步的鈍化,並使用國家奈米實驗中心(NDL)的紅外線光譜儀(FTIR)量測氮化矽薄膜的矽氫鍵的吸收響應與國立中央大學的QSSPC量測少數載子生命時間(Lifetime),藉此分析不同氮化矽薄膜厚度的鈍化效果以及不同FGA退火溫度的鈍化效果。實驗顯示140 nm的氮化矽薄膜,375℃10分鐘FGA的退火溫度有最佳鈍化效果。
    第三,討論PERL結構片與參考片的各效率參數的差異,並量測QE分析結構片與參考片的EQE差異。結構片的效率為15.38%較參考片提升了2.4%。


    致謝 I 摘要 II 目錄 III 圖目錄 VII 表目錄 XII 第一章 序論 1 1.1 前言 1 1.2文獻回顧 2 1.3研究動機 6 1.4論文架構 6 第二章 太陽能電池的基本原理 7 2.1 半導體物理 7 2.1-1 半導體物理簡介 7 2.1-2 本質半導體與外質半導體 8 2.1-2-1 本質半導體 8 2.1-2-2 外質半導體 10 2.1-3 施子與受子 10 2.1-4 N型半導體與P型半導體 12 2.1-4-1 N型半導體 12 2.1-4-2 P型半導體 12 2.2 太陽能電池 14 2.2-1 太陽能電池簡介 14 2.2-2 太陽光譜 14 2.2-3 光吸收 16 2.2-3-1 光吸收簡介 16 2.2-3-2 直接能隙與非直接能隙 17 2.2-4 載子復合 23 2.2-5 太陽電池的工作原理 24 2.3太陽電池的特性與效率參數 25 2.3-1 太陽電池的理想等效電路 25 2.3-2 考慮寄生電阻的太陽電池的等效電路 26 2.3-3 太陽電池的輸出參數定義 28 2.4 影響太陽電池的因素 31 2.5 背表面電場(BACK SURFACE FIELD) 34 第三章 實驗方法與流程 37 3.1 實驗流程圖 37 3.2 實驗基本流程介紹 38 3.2-1 RCA清潔(RCA CLEAN) 38 3.2-2 表面粗糙化(SURFACE TEXTURIZATION) 39 3.2-3 磷擴散(PHOSPHOROUS DIFFUSION) 40 3.2-4 網版電極印刷(PRINT-SCREEN METALLIZATION) 40 3.2-5 抗反射層(ANTI-REFLECTION COATING) 41 3.2-6 電極共燒(COFIRING) 42 3.2-7 沉積鈍化層(PASSIVATION LAYER) 43 3.2-8 背部圖形定義 44 第四章 實驗結果與討論 45 4.1 參考片之燒結參數優化 45 4.1-1 不同燒結溫度 45 4.1-2 不同燒結時間 48 4.2 PERL之結構優化 51 4.2-1 鈍化層厚度選擇 51 4.2-2 FGA對氮化矽薄膜的鈍化效果 54 4.3 參考片與結構片之比較 56 4.3-1 效率特性參數比較 56 4.3-2 量子效率(QE)比較 59 第五章 結論 61 參考文獻 63

    [1] 黃惠良、曾百亨、蕭錫鍊,太陽電池,五南出版社,2008。
    [2] http://www.seris.sg/site/servlet/linkableblob/main/4322/data/pdf_13052011_sem
    con_2011-data.pdf
    [3] J. M. Gee, R. R. King and K. W. Mitchell, “High-efficiency cell structures and
    processes applied to photovoltaic-grade czochralski silicon,” in: P. Basore (Ed.), Proc. IEEE 25th Photovolt. Specialist Conf., IEEE, New York, p.409, 1996.
    [4] Jianhua Zhao, Aihua Wang, P. Campbell and M. A. Green, “A 19.8% efficient
    honeycomb multicrystalline silicon solar cell with improved light trapping,”
    IEEE Transcations on Electron Devices, Vol 46, No 10, pp.1978-1983, 1999.
    [5] H. J. Moller, T. C. Funke, M. Rinio and S. Scholz, “Multicrystalline silicon for solar cells,” Thin Solid Films, Vol 487, pp. 179-187, 2002.
    [6] M. Rinio, S. Peters, M. Werner, A. Lawerenz and H. J. Möller, Measurement of the normalized recombination strength of dislocations in multicrystalline silicon solar cells,” Solid State Phenom., Vol 701, pp.82-87, 2002.
    [7] A. Cuevas, M. Stocks, D. McDonald, M. Kerr and C. Samundsett, “Recombination and trapping in multicrystalline silicon,” IEEE Transcations on Electron Devices, Vol 46, No. 10, pp. 2026-2034, 1999.

    [8] R. Ludemann, “Hydrogen passivation of multicrystalline silicon solar cells,”
    Materials Science and Engineering, Vol. B58, pp.86-90, 1999.
    [9] S. J. Pearton, J. W. Corbett and T. S. Shi, Hydrogen in crystalline semiconductors,” Appl. Phys., Vol. A43, No. 3, pp. 153-195, 1987.
    [10] M. L. Polignano, F. Cazzaniga, A. Sabbadini, F. Zanderigo and F. Priolo, “Metal contamination monitoring and gettering,” Materials Science in Semiconductor Processing, Vol. 1, No. 2, pp.119 -130, 1998.
    [11] S. A. McHugo, J. Bailey, H. Hieslmair and E. R. Weber, “Efficiency-limiting defects in polycrystalline silicon,” Proc. 1st World Conf. PVEC, Vol 2,
    pp.1607 -1610, 1994.
    [12] S. A. McHugo, A. C. Thompson, I. Perichaud and S. Martinuzzi, “Direct
    correlation of transition metal impurities and minority carrier recombination in multicrystalline silicon,” Appl. Phys. Lett., Vol. 72, No 26, pp.3482 -3484, 1998.
    [13] D. Macdonald, A. Cuevas and F. Ferrazza, “Response to phosphorus gettering of
    different regions of cast multicrystalline silicon ingots,” Solid-State Electron.,
    Vol. 43, No 3, pp.575 -581, 1999.
    [14] J. D. Hylton, “Light coupling and light trapping in alkaline etched multicrystalline silicon wafers for solar cells,” PhD dissertation, ECN, 2006.

    [15] M. J. Stocks, A. J. Carr and A. W. Blakers, “Texturing of polycrystalline silicon,” Solar Energy Materials and Solar Cells, Vol. 40, No. 1, pp. 33-42, 1996.
    [16] R. Einhaus, E. Vazsonyi, J. Szulfcik, J. Nijs and R. Mertens, “Isotropic texturing of multicrystalline silicon wafers with acidic texturing solutions,” in Proc. 26th IEEE PVSC, Anaheim, pp. 167-170, 1997.
    [17] Oldwig von Roos, “A simple theory of back surface field (BSF) solar cells,”
    J. Appl. Phys., Vol. 49, pp. 3503-3511, 1978.
    [18] J. G. Fossum, “Physical operation of back-surface-field silicon solar cells,”
    IEEE Transcations on Electron Devices, Vol. 24, No. 4, pp. 322-325, 1977.
    [19] O. Schultz, J. Rentsch, A. Grohe, S. W. Glunz and G. P. Willeke, “Dielectric rear
    surface passivation for industrial multicrystalline silicon solar cells,” Waikoloa, Hawaii, USA Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, Vol 1, pp. 885-889, 2006.
    [20] S. Ramanathan, V. Meemongkolkiat, A. Das, A. Rohatgi and I. Koehler, “Understanding and fabrication of 20% efficient cells using spin-on-based simultaneous diffusion and dielectric passivation,” IEEE Journal of
    Photovoltaics, Vol. 2, No. 1, pp. 22-26, 2012.

    [21] J. Zhao, A. Wang and M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates,” Solar Energy Materials and Solar Cells, Vol. 65, pp.429-435, 2001.
    [22] William Shockley and Hans J. Queisser, “Detailed balance limit of efficiency
    of p-n junction solar cells,” J. Appl. Phys., vol. 32, no. 3, pp.510-519, 1961.
    [23] 林堅楊、林坤立,單晶矽太陽電池製程及其頻譜響應之研究,國立雲林科技
    大學電子工程研究所。
    [24] A. Morales-Acevedo, “The quantum collection efficiency of heavily doped emitters in silicon solar cells,” Solar Cells, Vol 28, No 4, pp. 293-300, 1990.
    [25] J. A. del Alamo and R. M. Swanson, “The physics and modeling of heavily doped emitters,” IEEE Transactions on Electron Devices, Vol 31, No 12, pp.1878-1888, 1984.
    [26] J. A. del Alamo and R. M. Swanson, “Modeling of minority-carrier transport in heavily doped silicon emitters,” Solid-State Electronics, Vol 30, No 11,
    pp. 1127-1136, 1987.
    [27] Hua Li, Yichuan Wang, Jingjia Ji, Rulong Chen, Yanqi Xu, Aijun Shao, Caixia
    Tong and Zhengrong Shi, “Implementation of selective diffusion in large-scale production of mc-Si solar cells,” in Proc. 3rd Word Conf. PVEC, Osaka, Japan, 2003, pp. 967-970.
    [28] Jens Müller, Karsten Bothe, Sebastian Gatz, Heiko Plagwitz, Gunnar Schubert and Rolf Brendel, “Contact formation and recombination at screen-printed local aluminum-alloyed silicon solar cell base contacts,” IEEE Transactions on Electron Devices, Vol 58, No 10, pp. 3239-3245, 2011.
    [29] Jens Müller, Karsten Bothe, Sebastian Gatz and Heiko Plagwitz, Gunnar Schubert, and Rolf Brendel, “Recombination at local aluminum-alloyed silicon solar cell base contacts by dynamic infrared lifetime mapping,” Energy Procedia, Vol 8, pp. 521-526, 2011.
    [30] 施敏原著,黃調元譯,半導體元件物理與製造技術。
    [31] http://en.wikipedia.org/wiki/Periodic_table.
    [32] 曹昭陽、狄大衛、李秀文,太陽電池工作原理、技術與系統應用,五南圖
    書出版社,2009。
    [33] R. Siegel and J. R. Howell, “Thermal radiation heat transfer,” New York: McGraw-Hill, 1972.
    [34] P. G. Gast, Solar Radiation, in Handbook of Geophysics, ed. C. F. Campen et al.,
    New York: Macmillan, pp. 14-30, 1960.
    [35] A. Luque and S. Hegedus, “Handbook of photovoltaic science and engineering,” Chap. 3, John Wiley & Sons, Ltd, 2003.
    [36] http://en.wikipedia.org/wiki/Albert_Einstein.
    [37] 林明獻,太陽能電池技術入門,全華圖書股份有限公司,2009
    [38] A. Kaminski, B. Vandella, A. Fave, J.P. Boyeaux, Le Quan Nam, R. Monna, D.
    Sarti and A. Laugier, “Aluminum BSF in silicon solar cells,” Solar Energy Materials & Solar Cells, Vol 72, pp. 373-379, 2002.
    [39] Vichai Meemongkolkiat, Kenta Nakayashiki, Dong Seop Kim, Radovan
    Kopecek and Ajeet Rohatgi, “Factor limiting the formation of uniform and thick aluminum-back-surface field and its potentail,” Journal of The Electrochemical Society, Vol 153, No. 1, pp. G53-G58, pp. 2006.
    [40] Sinton, R.A., “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization,” Proc. 25th IEEE Photovoltaic Spec. Conf., pp. 457 -460, 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE