簡易檢索 / 詳目顯示

研究生: 謝佾蒼
論文名稱: 核能級石墨材料應用於模擬極高溫氣冷式反應器爐心環境之微結構變化與累積應變能之研究
The Microstructural Evolution and energy storage of Nuclear Grade Graphite in simulated Very High Temperature Gas Cooled Reactor (VHTGR) Core Environments
指導教授: 開執中
陳福榮
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 75
中文關鍵詞: 核能級石墨極高溫氣冷式反應器離子佈植輻射損傷穿透式電子顯微鏡累積應變能
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核能產氫的先決條件是必須使用極高溫核反應爐以滿足產氫時化學反應之需求。目前各種第四代核反應爐設計理念中,最可能在近期內達成目標者,當屬極高溫氣冷式核反應器(Very High Temperature Gas-Cooled Reactor, VHTGR)。極高溫氣冷式核反應爐所需使用之材料,尤其是在爐心內部的結構材料,不僅面臨極高溫度(∼1000℃),而且同時具有高能量及高通量快中子的輻射損傷效應。在長期使用(四十年設計壽命)下其材料性質變化與其微結構之關係密切,尤其在高輻射損傷環境下,石墨會產生能量累積的情形(因材料內部微結構產生缺陷,累積缺陷能),當出現意外事件時,有可能因高溫回火產生大量能量釋出的情形,此時極易因瞬間產生高溫使得石墨材料熔化或氣化,進而造成意外事件會亦發不可預測,對於反應爐安全性形成嚴重挑戰。
    本研究之主要目的,是在於了解核能級石墨材料在高溫及高輻射環境下之微結構變化,進而了解其內部缺陷形成之機制,針對其所可能產生之風險深入探討可能的對策,事先設計應對方法。
    本實驗是利用離子佈植的方式來模擬長時間下核能級石墨受長時間中子照射所受的輻射損傷,之後使用穿透式電子顯微鏡(TEM)進行試片的微結構分析,並利用二維快速傅立葉轉換技術(FFT techniques)進行 HRTEM影像的定量分析比較,最後用彈性變形累積應變能公式估算可能累積於石墨內部的應變總能和可能造成的最大溫度升高。


    摘要 I 章節目錄 II 圖目錄 IV 表目錄 VI 第一章 研究動機 1 第二章 文獻回顧 5 2-1核分裂反應器之基本構造 5 2-2極高溫氣冷式反應器 6 2-2.1 球床式反應堆 6 2-2.2 實驗用反應堆HTR-10 9 2-3 核能級石墨材料 9 2-3.1 核能級石墨材料的輻射損傷 11 2-3.2 維格納效應 12 2-3.3 石墨受中子輻照後蓄能的情形 13 2-3.4 極高溫氣冷式反應器對於石墨的要求 13 第三章 實驗原理與方法 21 3-1 SRIM程式模擬計算 21 3-2 快速傅立葉轉換 22 3-3 離子佈植照射系統 24 3-3.1 加速器系統 24 3-3.2 入射粒子與靶材之交互作用 24 3-3.3 三射束離子照射系統 25 3-4 SRIM實驗模擬 26 3-5 照射實驗流程 26 3-6 實驗分析 27 3-6.1 電子顯微鏡原理 27 3-6.2 電子束與物質交互作用 27 3-6.3 電子顯微鏡系統 28 3-6.4 電子槍 29 3-7 TEM試片製備 31 第四章 結果與討論 41 4-1 HRTEM影像分析 41 4-1.1 200keV電子束對石墨試片之影響 41 4-1.2 不同照射劑量之HRTEM影像分析 43 4-1.3 不同照射溫度之HRTEM影像分析 44 4-1.4 a平面方向原子間距量測 44 4-2 c 軸方向之無序度分析 45 4-2.1 定義無序度係數 45 4-2.2不同照射劑量之無序度係數比較 46 4-2.3不同照射溫度之無序度係數比較 47 4-3 石墨內部應變能之計算 48 4-3.1計算應變能之方法 49 4-3.2不同照射劑量之累積應變能比較 50 4-3.3不同照射溫度之累積應變能比較 51 4-4 材料內部應變能釋放可能造成溫度上升的影響 52 第五章 結論 69 第六章 未來研究方向 71 參考文獻 73

    [1] 《聯合國氣候變化框架公約》京都議定書
    [2] A Technology Roadmap for Generation IV Nuclear Energy Systems, 2004
    [3] http://www.gen-4.org/Technology/systems/vhtr.htm
    [4] Idaho National Lab VHTR website (http://nuclear.inl.gov/gen4/vhtr.shtml)
    [5] General Atomics Page GT-MHR (http://gt-mhr.ga.com/)
    [6] 黃慶東等,核能發電本課程訓練教材,B.3-92~94.清華大學原子科學院編印
    [7] Philippe Billot,Dominique Barbier,VERY HIGH TEMPERATURE REACTOR (VHTR) THE FRENCH ATOMIC ENERGY COMMISSION (CEA) R&D PROGRAM,2004
    [8] Pebble Bed Modular Reactor (Pty) Limited (PBMR) (http://www.pbmr.co.za/)
    [9] D. A. Petti, J. Buongiorno, J. T. Maki, R. R. Hobbins, G. K. Miller, Nuclear Engineering and Design 222:281-297,2003
    [10] Stefan K□hn,2006
    [11] 維基百科 – 球床反應堆
    [12] TRISO fuel descripsion, ( http://www.romawa.nl/nereus/fuel.html)
    [13] China leading world in next generation of nuclear plants, South China Morning Post,2004
    [14]Tsing Hua University(Beijing),Institute of nuclear and new energy technology, HTR-10 (http://www.inet.tsinghua.edu.cn/english2/academics.htm)
    [15] Shouyin HU, Xihua LIANG, Liqiang WEI, COMMISSIONING AND OPERATION EXPERIENCE AND SAFETY EXPERIMENTS ON HTR-10,2006
    [16]R. E. Nightingale, Nuclear Graphite, 1962
    [17]Hugh O.Pierson, Hand book of carbon, graphite, diamond and fullerenes, 1993
    [18] Lamarsh, Introduction to nuclear engeering, 3rd edition
    [19]M.S.Dresselhaus, R.Kalish ,Ion implantation in diamond, graphite and related materials, 1992
    [20] Michael A. F□tterer,Gerard Berg, Alain Marmier,IRRADIATION RESULTS OF AVR FUEL PEBBLES AT INCREASED TEMPERATURE AND BURN-UP IN THE HFR PETTEN, 2006
    [21] J. Koike, D. F. Pedraza, Dimensional changes in highly oriented pyrolytic graphite due to electron – irradiation, 1994
    [22] Gerd Haag, Properties of ATR-2E Graphite and Property Changes due to Fast Neutron Irradiation
    [23] Glasstone & Sesonke. Nuclear Reactor Engineering. Springer,1994
    [24] ROB H. TELLING, CHRIS P. EWELS, Wigner defects bridge the graphite gap, 2003
    [25] Wikipedia , Wigner effect
    [26] IAEA, Characterization, Treatment and Conditioning of Radioactive Graphite from Decommissioning of Nuclear Reactors, 2006
    [27] B.K.Bylkin, G.B.Davydova, COMPUTATIONAL ESTIMATES OF THE RADIATION CHARACTERISTICS OF IRRADIATED GRAPHITE AFTER FINAL SHUTDOWN OF A NUCLEAR POWER PLANT WITH AN RBMK REACTOR, 2004
    [28] J.F. Ziegler, J.P. Biersack, and U. Littmark, Stopping and Range of Ions in Solids, Vol. 1 (Pergamon Press, New York,1985)
    [29] J. W. Goodman, Introduction to Fourier optics, 1992
    [30] Wikipedia , fast Fourier transform
    [31] 吳泰伯, 許樹恩, X光繞射原理與材料結構分析, 1993
    [32] 物理會刊十二卷一期1990年
    [33] Donald R. Olander, “Fundamental aspects of nuclear reactor fuel elements”, 1976.
    [34] 吳聲旺,國立清華大學工程與系統科學研究所碩士論文,2007.
    [35] 科儀叢書3, 材料電子顯微鏡學, 國科會精儀中心.
    [36] 汪建民, 杜正恭, 材料分析 中國材料科學學會 1998.
    [37] Anjana Asthana, Yoshio Matsui, Investigations on the structural disordering of neutron-irradiated highly oriented pyrolytic graphite by X-ray diffraction and electron microscopy, 2005
    [38] Ya. I. Shtrombakh, B. A. Gurovich, Radiation-damage of graphite and carbon graphite materials, 1995
    [39]P. G. Lucasson, R. M. Walker, Physical review, Volume 127, Number 2
    [40] David B. Williams, C. Barry Carter, Transmission electron microscopy, 1996
    [41] Wikipedia , Windscale Fire
    [42] George E. Dieter, Mechanical Metallurgy, 3rd edition, 1986
    [43] Yuchen Ma, Simulation of interstitial diffusion in graphite, 2007
    [44] David R. Gaskell, Introduction to Metallurgical Thermodynamics, 2nd Edition, 1994
    [45] Wikipedia , graphite
    [46] J. W□RNER, W. BOTZEM, HEAT TREATMENT OF GRAPHITE AND RESULTING TRITIUM EMISSIONS
    [47] R.M. GUPPY, J. McCARTHY, S.J. WISBEY, TECHNICAL ASSESSMENT OF THE SIGNIFICANCE OF WIGNER ENERGY FOR DISPOSAL OF GRAPHITE WASTES FROM THE WINDSCALE PILES

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE