簡易檢索 / 詳目顯示

研究生: 柳源德
Daniel Yuen-Teh Liu
論文名稱: 天門冬胺酸激活酵素III 剔除對大腸桿菌全基因體表現的影響
Study of global gene expression profiles of lysC gene knockout Escherichia coli
指導教授: 許宗雄
Tzong-Hsiung Hseu
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2007
畢業學年度: 96
語文別: 英文
論文頁數: 92
中文關鍵詞: 天門冬胺酸激活酵素III大腸桿菌基因晶片離胺酸
外文關鍵詞: aspartokinase III, Escherichia coli, microarray, lysine
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在大腸桿菌中,離胺酸的合成需要經過九個步驟。天門冬胺酸磷酸化酵素III是負責離胺酸合成路徑中的第一步:將天門冬胺酸予以磷酸化。在此論文中,我們利用噬菌體的重組去氧核糖核酸系統成功剔除天門冬胺酸磷酸化酵素III的基因lysC,接著我們利用基因晶片的技術比較lysC 剔除與野生種大腸桿菌 K-12 W3110 之所有的基因表現變化的差異。結果發現,有許多基因有明顯的表現差異,包括與離胺酸合成有關的asd、 dapB 與dapD。 另外, 與天門冬胺酸合成有關的基因ppc 及gdhA也有明顯的上升表現。 在 lysC 剔除的大腸桿菌中, 負責離胺酸運輸的蛋白其基因lysP也有顯著的上升.基於上述的結果,我們推論lysC 剔除的大腸桿菌是處在離胺酸缺乏的情況。之後我們為了進一步了解lysC基因對離胺酸合成途徑上其他基因的影響,同時了解它與大腸桿菌中其他生化合成系統的影響,我們設計了一套時間系列的生物晶片實驗來觀察野生型與lysC剔除的大腸桿菌在面對離胺酸拮抗劑S-(2-aminoethyl) cysteine (AEC) 的反應。結果顯示AEC造成許多影響,包括離胺酸的合成、核苷酸的合成、硫基的代謝、運輸系統與緊迫蛋白的基因表現。AEC的處理造成了離胺酸過剩的表現型,與合成離胺酸有關的基因如asd、 dapA、 dapB、 dapD 及lysA之表現都明顯的受到壓抑,同時與天門冬胺酸合成有關的基因aspC、 ppc、 gdhA也都被發現減少其表現量。本論文利用生物晶片的方式有助於釐清了lysC基因在大腸桿菌中扮演的系統角色,並進一步幫助了解大腸桿菌在合成離胺酸途徑上的基因調控。


    In Escherichia coli, the biosynthesis of lysine is generated from aspartate, and the process contains nine steps. Aspartokinase III encoded by lysC, catalyzes the first step of lysine biosynthesis. In this thesis, we generated a lysC knockout strain E. coli K-12 W3110 using汹财 red recombination system. And we inspected the global gene expression profiles between lysC knockout and wild type E. coli. Several significant differential gene expressions were observed, including the up-regulation of lysine biosynthetic pathway genes like asd, dapB and dapE. Genes related to aspartate and glutamate biosynthetic processes like ppc and gdhA were up-regulated as well. These results suggested that the lysC knockout exhibited a lysine starvation phenotype. A time series microarray analysis was carried out following the lysC knockout profiling experiment. S-(2-aminoethyl) cysteine (AEC) was added to the medium and the gene expression profiles following four time points were monitored. The results of AEC treatment time series expression analysis showed that the lysC-induced lysine starvation phenotype was neutralized by AEC. AEC affected several clusters of gene expressions, including lysine biosynthetic process, nucleotide biosynthetic process, sulfate metabolic process, transport system and stress response proteins. AEC treated lysC knockout exhibited a lysine excess phenotype by repressing the lysine biosynthetic process genes like asd, dapA, dapB, dapD and lysA. Genes related to aspartate biosynthesis like aspC and ppc and gdhA were also found down-regulated after AEC treatment. The results of this thesis help clarifying the systematic regulation of lysine biosynthesis in E. coli.

    ABSTRACT I TABLE OF CONTENTS V LIST OF TABLES VII LIST OF FIGURES VIII Chapter 1 General introduction Introduction 2 References 7 Figures 10 Chapter 2 Global gene expression profiling of wild type and lysC knockout Escherichia coli W3110 Abstract 14 Introduction 15 Materials and methods 17 Results and discussions 24 References 30 Tables and figures 34 Chapter 3 Global gene expression profiling of wild type and lysC knockout Escherichia coli W3110, in response to S-(2-aminoethyl) cysteine Abstract 42 Introduction 43 Materials and Methods 45 Results and discussions 48 References 58 Figures 66 Chapter 4 Conclusion 80 Appendix 84

    Acord, J., and Masters, M. (2004) Expression from the Escherichia coli dapA promoter is regulated by intracellular levels of diaminopimelic acid. FEMS Microbiol Lett 235: 131-137.
    Benjamini, Y., and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57: 289-300.
    Bouvier, J., Richaud, C., Higgins, W., Bogler, O., and Stragier, P. (1992) Cloning, characterization, and expression of the dapE gene of Escherichia coli. J Bacteriol 174: 5265-5271.
    Boy, E., and Patte, J.C. (1972) Multivalent repression of aspartic semialdehyde dehydrogenase in Escherichia coli K-12. J Bacteriol 112: 84-92.
    Chuang, S.-E., Burland, V., Plunkett, G., Daniels, D.L., and Blattner, F.R. (1993a) Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134: 1-6.
    Chuang, S.E., Daniels, D.L., and Blattner, F.R. (1993b) Global regulation of gene expression in Escherichia coli. J Bacteriol 175: 2026-2036.
    Cohen, G.N., and Saint-Girons, I. (1987) Biosynthesis of Threonine, lysine, Methionine. In Escherichia coli and Salmonella typhimurium, Cellular and molecular biology. Vol. 1. John L. Ingraham, K.B.L., Boris Magasanik, Moselio SchAEChter, and H. Edwin Umbarger (ed). Washington, D.C.: American society for microbiology, pp. 429-444.
    Cox, R.J., Sherwin, W.A., Lam, L.K.P., and Vederas, J.C. (1996) Synthesis and Evaluation of Novel Substrates and Inhibitors of N-Succinyl-LL-diaminopimelate Aminotransferase (DAP-AT) from Escherichia coli. J. Am. Chem. Soc. 118: 7449-7460.
    Datsenko, K.A., and Wanner, B.L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640-6645.
    Di Girolamo, M., Busiello, V., Coccia, R., and Foppoli, C. (1990) Aspartokinase III repression and lysine analogs utilization for protein synthesis. Physiol Chem Phys Med NMR 22: 241-245.
    Ernst, J., and Bar-Joseph, Z. (2006) STEM: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 7: 191.
    Grundy, F.J., Lehman, S.C., and Henkin, T.M. (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci U S A 100: 12057-12062.
    Hayashi, M., Ohnishi, J., Mitsuhashi, S., Yonetani, Y., Hashimoto, S., and Ikeda, M. (2006) Transcriptome analysis reveals global expression changes in an industrial L-lysine producer of Corynebacterium glutamicum. Biosci Biotechnol Biochem 70: 546-550.
    Helling, R.B. (1994) Why does Escherichia coli have two primary pathways for synthesis of glutamate? J Bacteriol 176: 4664-4668.
    Jack, D.L., Paulsen, I.T., and Saier, M.H. (2000) The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146 ( Pt 8): 1797-1814.
    Karsten, W.E. (1997) Dihydrodipicolinate synthase from Escherichia coli: pH dependent changes in the kinetic mechanism and kinetic mechanism of allosteric inhibition by L-lysine. Biochemistry 36: 1730-1739.
    Keseler, I.M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I.T., Peralta-Gil, M., and Karp, P.D. (2005) EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Res 33: D334-337.
    Komatsubara, S., Kisumi, M., and Chibata, I. (1979) Participation of lysine-sensitive aspartokinase in threonine production by S-2-aminoethyl cysteine-resistant mutants of Serratia marcescens. Appl Environ Microbiol 38: 777-782.
    Kramer, R. (1994) Secretion of amino acids by bacteria: Physiology and mechanism. FEMS Microbiol Rev 13: 75-93.
    Kuczynska-Wisnik, D., Laskowska, E., and Taylor, A. (2001) Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response. Biochem Biophys Res Commun 284: 57-64.
    Lee, J.H., Lee, D.E., Lee, B.U., and Kim, H.S. (2003) Global analyses of transcriptomes and proteomes of a parent strain and an L-threonine-overproducing mutant strain. J Bacteriol 185: 5442-5451.
    Ling, M., Allen, S.W., and Wood, J.M. (1994) Sequence analysis identifies the proline dehydrogenase and delta. J Mol Biol 243: 950-956.
    Mazat, J.P., and Patte, J.C. (1976) Lysine-sensitive aspartokinase of Escherichia coli K12. Synergy and autosynergy in an allosteric V system. Biochemistry 15: 4053-4058.
    Murphy, K.C. (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180: 2063-2071.
    Nikaido, H., and Vaara, M. (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49: 1-32.
    Ogawa-Miyata, Y., Kojima, H., and Sano, K. (2001) Mutation analysis of the feedback inhibition site of aspartokinase III of Escherichia coli K-12 and its use in L-threonine production. Biosci Biotechnol Biochem 65: 1149-1154.
    Richaud, C., Richaud, F., Martin, C., Haziza, C., and Patte, J.C. (1984) Regulation of expression and nucleotide sequence of the Escherichia coli dapD gene. J Biol Chem 259: 14824-14828.
    Richaud, F., Phuc, N.H., Cassan, M., and Patte, J.C. (1980) Regulation of aspartokinase III synthesis in Escherichia coli: isolation of mutants containing lysC-lac fusions. J Bacteriol 143: 513-515.
    Steffes, C., Ellis, J., Wu, J., and Rosen, B.P. (1992) The lysP gene encodes the lysine-specific permease. J Bacteriol 174: 3242-3249.
    Stragier, P., Borne, F., Richaud, F., Richaud, C., and Patte, J.C. (1983) Regulatory pattern of the Escherichia coli lysA gene: expression of chromosomal lysA-lacZ fusions. J Bacteriol 156: 1198-1203.
    Theze, J., Margarita, D., Cohen, G.N., Borne, F., and Patte, J.C. (1974) Mapping of the structural genes of the three aspartokinases and of the two homoserine dehydrogenases of Escherichia coli K-12. J Bacteriol 117: 133-143.
    Wallace, B., Yang, Y.J., Hong, J.S., and Lum, D. (1990) Cloning and sequencing of a gene encoding a glutamate and aspartate carrier of Escherichia coli K-12. J Bacteriol 172: 3214-3220.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE