簡易檢索 / 詳目顯示

研究生: 滕原合
Teng, Yuan-He
論文名稱: 利用似噪音脈衝產生可見光至近紅外光超連續白光光源
Noise-like-pulse-generated visible-NIR supercontinuum white light source
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 施宙聰
Shy, Jow-Tsong
吳小華
Wu, Hsiao-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 77
中文關鍵詞: 似噪音脈衝超連續光譜自動控制
外文關鍵詞: Noise-like pulses, Supercontinuum generation, Automatic control
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用雙光子致光電流吸收作為回饋訊號,改變腔內的非線性效應即化偏轉(Nonlinear polarization rotation)可以自動尋找一具長腔全正色散(ANDi)光纖雷射穩定脈衝輸出,且操縱似噪音脈衝輸出特性。此外,也可以通過調整泵浦功率和雙光子吸收致光電流之目標值來操縱超連續光譜的範圍。我們也研究以似噪音脈衝激發單模光纖及光子晶體光纖來產生超連續白光。若使用50公尺單模光纖,超連續白光光譜涵蓋1000奈米至1750奈米;使用5公尺光子晶體光纖時,超連續光譜由可見光550奈米延伸至1950奈米,且可見光波段(600奈米-1040奈米)光譜分布較為理想(近高斯型),適合光學同調斷層掃描成像分析等應用。目前白光光譜寬度最寬可達到1400奈米。以1040奈米為界,低於此界線的白光10-dB帶寬最寬達405 nm,而在長波長範圍之10-dB帶寬為863 nm。我們也利用色散位移光纖達成時間拉伸技術後,佔空比最高可以達到85%。


    Using two-photon absorption (TPA) signal as a feedback signal and rotating the nonlinear polarization rotation can automatically obtain stable pulses from long-cavity all-normal dispersion (ANDi) fiber laser. The output properties of noise-like pulses (NLPs) can be also manipulated. In addition, the range of supercontinuum spectra can be manipulated by adjusting the pump power and the target value of TPA signal. We can use NLPs source to generate the supercontinuum white light by using single mode fiber (SMF) or photonic crystal fiber (PCF). By using 50-meter SMF, the spectral range of supercontinuum white light is between 1000 nm to 1750 nm, while the spectral range by using PCF is between 550 nm to 1950 nm. The spectral pattern is ideal (similar to Gaussian shape) and is suitable for optical coherence tomography imaging analysis in visible range. At present, the white light spectrum can be up to 1400 nm. Bounded by 1040 nm, the 10-dB bandwidth is 405 nm in the short wavelength range and 863 nm in the long wavelength range. After using the dispersion-shifted fiber to achieve time-stretch technique, the highest duty cycle can be achieved to 85 %.

    摘要 I Abstract II 致謝 III Table of Contents IV List of Figures VII List of Tables XII List of Abbreviations XIII Chapter 1 Introduction 1 Chapter 2 Theoretical background 2 2.1 Fiber laser and amplifier 3 2.1.1. Ytterbium-doped fiber 3 2.1.2. Pumping wavelength of laser diode 5 2.1.3. Doped fiber amplifier 5 2.1.4. Operation of cladding pumping 6 2.2 Mode-locking techniques 7 2.2.1. Mode-locking theory 7 2.2.2. Active mode-locking 9 2.2.3. Passive mode-locking 10 2.2.4. Nonlinear polarization evolution (NPE) 10 2.3 Nonlinearities in optical fibers 12 2.3.1. Four wave mixing (FWM) 12 2.3.2. Self-Phase modulation (SPM) 12 2.3.3. Stimulated Raman Scattering (SRS) 13 2.4 Ultrafast pulses propagation in fiber laser system 15 2.4.1. Nonlinear Schrödinger equation (NLSE) 15 2.5 Automatic control of fiber laser system 17 2.5.1. Introduction 17 2.5.2. Choices of feedback signals 18 2.6 Supercontinuum generation in optical fibers 19 2.6.1. Introduction 19 2.6.2. Physical mechanism 19 Chapter 3 Noise-like pulses fiber laser 20 3.1 Background 20 3.2 Characteristics 21 3.3 Phenomenological model of noise-like pulses 23 Chapter 4 Swept-source generated from automatic ANDi fiber laser 25 4.1 Method of automatic control 26 4.2 Photogenerated carrier density 27 4.3 Automatic fiber laser system in short cavity 29 4.3.1. Short cavity with 3nm intra-cavity bandpass filter 29 4.3.2. Short cavity without intra-cavity bandpass filter 35 4.4 Automatic fiber laser system in long cavity 39 4.4.1. Long cavity with 3nm intra-cavity bandpass filter 39 4.4.2. Long cavity with 10nm intra-cavity bandpass filter 42 4.4.3. Long cavity with 25nm intra-cavity bandpass filter 46 4.4.4. Long cavity without intra-cavity bandpass filter 49 4.5 Summary 51 Chapter 5 Supercontinuum generated and pulse stretching by noise-like pulse 51 5.1 Introduction 51 5.2 Simulation 52 5.3 Yb-doped fiber amplifier 57 5.4 Supercontinuum generation in single-mode fiber 60 5.5 Supercontinuum generation in photonics crystal fiber 63 5.5.1. System setup 63 5.5.2. The effect for supercontinuum generation in different goal voltage 64 5.6 Summary 68 Chapter 6 Time-stretched pulses 69 6.1 Introduction 69 6.2 Experimental results 70 6.3 Summary 72 Chapter 7 Conclusions and future works 73 7.1 Conclusions 73 7.2 Future works 73 References 75

    [1] B. Nie, G. Parker, V. V. Lozovoy, and M. M. Dantus, "Energy scaling of Yb fiber oscillator producing clusters of femtosecond pulses," Optical Engineering, vol. 53, no. 5, p. 051505, 2013.
    [2] D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, and S. Kukarin, "Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution," Optics express, vol. 21, no. 18, pp. 20626-20631, 2013.
    [3] U. Andral et al., "Toward an autosetting mode-locked fiber laser cavity," JOSA B, vol. 33, no. 5, pp. 825-833, 2016.
    [4] S. Kim, M. Choi, J. Song, J. Lee, and Y. Kim, "Selective generation of two pulse modes in a single all normal dispersion fiber laser oscillator and analysis of their optical characteristics," in Fiber Lasers XIV: Technology and Systems, 2017, vol. 10083, p. 100832B: International Society for Optics and Photonics.
    [5] P.-H. Huang, "Auto-setting of noise-like and mode-locked dispersion-mapped Yb-doped fiber laser using two-photon-induced photocurrent as the feedback signal," 2017.
    [6] Y.-J. You, "Fiber-laser-generated noise-like pulses and their applications to supercontinuum generation and optical coherence tomography," 2016.
    [7] K. Lu and N. K. Dutta, "Spectroscopic properties of Yb-doped silica glass," Journal of applied physics, vol. 91, no. 2, pp. 576-581, 2002.
    [8] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE Journal of quantum electronics, vol. 33, no. 7, pp. 1049-1056, 1997.
    [9] P. Mukhopadhyay, "Femtosecond pulse generation and amplification in Yb-doped fibre oscillator-amplifier system," Pramana, vol. 75, no. 5, pp. 787-805, 2010.
    [10] D. Richardson, J. Nilsson, and W. Clarkson, "High power fiber lasers: current status and future perspectives," JOSA B, vol. 27, no. 11, pp. B63-B92, 2010.
    [11] M. Suzuki, R. A. Ganeev, S. Yoneya, and H. Kuroda, "Generation of broadband noise-like pulse from Yb-doped fiber laser ring cavity," Optics letters, vol. 40, no. 5, pp. 804-807, 2015.
    [12] J. M. Stone and J. C. Knight, "Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser," Optics express, vol. 16, no. 4, pp. 2670-2675, 2008.
    [13] N. Wang, J.-H. Cai, X. Qi, S.-P. Chen, L.-J. Yang, and J. Hou, "Ultraviolet-enhanced supercontinuum generation with a mode-locked Yb-doped fiber laser operating in dissipative-soliton-resonance region," Optics Express, vol. 26, no. 2, pp. 1689-1696, 2018.
    [14] S.-S. Lin, S.-K. Hwang, and J.-M. Liu, "Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses," Optics express, vol. 22, no. 4, pp. 4152-4160, 2014.
    [15] C.-W. Huang, "High energy noise-like pulses generated by a dual-core size all-normal dispersion fiber laser," 2017.
    [16] S. Kobtsev and S. Smirnov, "Fiber lasers mode-locked due to nonlinear polarization evolution: golden mean of cavity length," Laser Physics, vol. 21, no. 2, pp. 272-276, 2011.
    [17] J.-Z. Huang, "Amplification and Dispersion Control of Noise-like Pulses Generated by an ANDi Yb-fiber Laser," 2016.
    [18] A. Boucon et al., "Noise-like pulses generated at high harmonics in a partially-mode-locked km-long Raman fiber laser," Applied Physics B, vol. 106, no. 2, pp. 283-287, 2012.
    [19] S. Smirnov and S. Kobtsev, "Modelling of noise-like pulses generated in fibre lasers," in Real-time Measurements, Rogue Events, and Emerging Applications, 2016, vol. 9732, p. 97320S: International Society for Optics and Photonics.
    [20] A. M. Weiner, "Ultrafast Optics," 2009.
    [21] F. Ö. Ilday, J. Buckley, L. Kuznetsova, and F. W. Wise, "Generation of 36-femtosecond pulses from a ytterbium fiber laser," Optics Express, vol. 11, no. 26, pp. 3550-3554, 2003.
    [22] A. Chong, J. Buckley, W. Renninger, and F. Wise, "All-normal-dispersion femtosecond fiber laser," Optics express, vol. 14, no. 21, pp. 10095-10100, 2006.
    [23] Hamamatsu, "GaAsP photodiode (G1117)."
    [24] F. R. Laughton, J. H. Marsh, D. A. Barrow, and E. L. Portnoi, "The two-photon absorption semiconductor waveguide autocorrelator," IEEE Journal of Quantum Electronics, vol. 30, no. 3, pp. 838-845, 1994.
    [25] Skyeralaser, "Datasheet of 10W 915nm Uncooled Multimode Laser Diode Module."
    [26] Nufern. (2015). Specification of 10/125 NuGEN9 Precision Matched Active LMA Double Clad Fiber. Available: http://www.nufern.com/pam/optical_fibers/2807/LMA-YDF-10/125-9M/
    [27] Thorlabs, "Specification of Zero-Order Half-Wave Plate WPH05M-1064 - Ø1/2."
    [28] Newport, "Specification of Broadband Polarizing Cube Beamsplitter, 900-1300 nm."
    [29] Thorlabs, "Specification of Zero-Order Quarter-Wave Plate WPQ05M-1064 - Ø1/2."
    [30] Electro-Optics-Technology, "Datasheet of InGaAs Photodetector."
    [31] Teledyne-Lecroy, "Datasheet of Oscilloscope WaveRunner 610zi."
    [32] Anritsu, "Datasheet of Optical Spectrum Analyzer (OSA) MS9740A."
    [33] H. Kawagoe et al., "Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography," Biomedical optics express, vol. 5, no. 3, pp. 932-943, 2014.
    [34] L. Boivin and B. C. Collings, "Spectrum slicing of coherent sources in optical communications," Optical Fiber Technology, vol. 7, no. 1, pp. 1-20, 2001.
    [35] J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Reviews of modern physics, vol. 78, no. 4, p. 1135, 2006.
    [36] S.-H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, "High-speed optical frequency-domain imaging," Optics express, vol. 11, no. 22, pp. 2953-2963, 2003.
    [37] O. optics, "The specfication of Ocean optics (NIRQuest512-2.5)."
    [38] L. Velazquez-Ibarra, A. Diez, E. Silvestre, M. V. Andres, M. A. Martínez, and J. Lucio, "Pump power dependence of four-wave mixing parametric wavelengths in normal dispersion photonic crystal fibers," IEEE Photon. Technol. Lett, vol. 23, no. 14, pp. 1010-1012, 2011.
    [39] S. Moon and D. Y. Kim, "Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source," Optics Express, vol. 14, no. 24, pp. 11575-11584, 2006.
    [40] Thorlabs, "PDB480C-AC - Fiber Coupled Balanced Amp. Photodetector, 1.6 GHz, InGaAs, AC Coupled."
    [41] A.-H. Dhalla, K. Shia, and J. A. Izatt, "Efficient sweep buffering in swept source optical coherence tomography using a fast optical switch," Biomedical optics express, vol. 3, no. 12, pp. 3054-3066, 2012.
    [42] X. Shen, W. Li, M. Yan, and H. Zeng, "Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers," Optics Letters, vol. 37, no. 16, pp. 3426-3428, 2012.

    QR CODE