研究生: |
鍾凱恩 Chung, Kai-En |
---|---|
論文名稱: |
基於模擬退火及蒙地卡羅搜尋樹之量子電路調度演算法 A Quantum Circuit Rescheduling Algorithm Combining Simulated Annealing and Monte Carlo Tree Search |
指導教授: |
麥偉基
Mak, Wai-Kei |
口試委員: |
陳宏明
Chen, Hung-Ming 王廷基 Wang, Ting-Chi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 量子電路 、模擬退火 、蒙地卡羅樹搜尋 、串擾 、量子邏輯閘重新排序 、量子邏輯閘交換律 |
外文關鍵詞: | Quantum-Circuit, Simulated-Annealing, Monte-Carlo-Tree-Search, Crosstalk, Quantum-Gate-Reordering, Quantum-Gate-Commutativity-Rules |
相關次數: | 點閱:56 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在量子電腦領域,串擾是主要噪聲來源,嚴重影響量子電路的計算準確性。隨著對高保真度量子閘和大規模量子電路設計需求的增加,有效抑制串擾成為研究重點。傳統緩解串擾的方法主要依賴硬體策略,如提升量子位間的隔離或改善控制訊號傳輸,這些方法僅適用於特定平台且擴展性有限。此外,軟體技術如錯誤校正碼和動態調度演算法雖能部分減少串擾影響,但無法充分利用指令並行性,限制效能提升。針對此,我們提出基於交換律的指令重新排序方法,以降低量子閘間的串擾。我們首先建立涵蓋主要量子閘的廣義交換律規則,確保重新排序不影響計算正確性。接著,設計結合模擬退火與蒙地卡羅搜尋樹優化的雙向重新排序演算法,靈活調整量子閘執行順序,有效減少相鄰閘操作間的串擾。本方法能捕捉指令間的相關性,且保真度評估函數結合了量子閘錯誤率與退相干效應。對 117 個量子電路的評估結果顯示,本方法較我們所知的最新技術可提升保真度高達 2.6 倍,顯示其在大規模量子電腦系統中顯著提升運算效能與可靠性。
In quantum computing, crosstalk is a primary noise source that significantly affects the accuracy of quantum circuit computations. With the growing demand for high-fidelity quantum gates and large-scale quantum circuit designs, effective crosstalk mitigation has become a key research focus. Traditional methods rely on hardware strategies, such as enhancing qubit isolation or improving control signal transmission, which are limited to specific platforms and face scalability issues. Additionally, software techniques like error correction codes and dynamic scheduling algorithms can partially reduce crosstalk but fail to fully exploit instruction parallelism, limiting performance gains. To address this, we propose a commutativity-based instruction reordering method to minimize crosstalk between quantum gates. We first establish generalized commutativity rules for main quantum gate types to ensure computational correctness during reordering. Then, we design a bidirectional reordering algorithm that integrates simulated annealing and Monte Carlo search tree optimization, allowing flexible adjustment of gate execution order and effectively reducing crosstalk between adjacent operations. Our method captures both forward and backward instruction correlations, and our fidelity evaluation incorporates quantum gate error rates and decoherence effects. Evaluating 117 quantum circuits, results show that our method improves fidelity
by up to 2.6X compared to state-of-the-art techniques [5]. This demonstrates significant advantages in large-scale quantum computer systems by substantially enhancing computational performance and reliability.
[1] Peter W. Shor. 1997. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer,” SIAM J. Comput. 26, 5 (Oct. 1997), 1484–1509.
https://doi.org/10.1137/S0097539795293172
[2] C. Zalka. “Grover’s quantum searching algorithm is optimal,” Physical Review A, vol.
60, no. 4, pp. 2746-2751, 1999.
[3] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. “Quantum cryptography,” Rev. Mod.
Phys., vol. 74, pp.145-195, 2002.
[4] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenze, N. Margolus, P. Shor, T. Sleator,
J. A. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Physical
Review A, vol. 52, no. 5, pp. 3457-3467, 1995.
[5] Prakash Murali, et al. “Software mitigation of crosstalk on noisy intermediate-scale quantum computers.” Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems. 2020.
[6] Xie Lei, Jidong Zhai, and Weimin Zheng. “Mitigating crosstalk in quantum computers
through commutativity-based instruction reordering.” 2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 2021.
[7] Siyuan Niu, and Aida Todri-Sanial. “Analyzing crosstalk error in the NISQ era.” 2021
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2021.
[8] S.Kirkpatrick, C.Daniel Gelatt, Jr., and M.P.Vecchi.“Optimization by simulated annealing.” science 220.4598 (1983): 671-680.
[9] Cameron B.Browne, et al. “A survey of monte carlo tree search methods.” IEEE Transactions on Computational Intelligence and AI in games 4.1 (2012): 1-43.
[10] John Preskill. “Quantum computing in the NISQ era and beyond.” Quantum 2 (2018): 79.
[11] Adam Winick, Joel J. Wallman, and Joseph Emerson. “Simulating and mitigating
crosstalk.” Physical review letters 126.23 (2021): 230502.
[12] Andrew Steane. “Quantum computing.” Reports on Progress in Physics 61.2 (1998): 117.
[13] Gian Giacomo Guerreschi, and Jongsoo Park. “Two-step approach to scheduling quantum
circuits.” Quantum Science and Technology 3.4 (2018): 045003.
[14] Toshinari Itoko, et al. “Quantum circuit compilers using gate commutation rules.” Proceedings of the 24th Asia and South Pacific Design Automation Conference. 2019.
[15] Robert Wille, et al. “RevLib: An online resource for reversible functions and reversible
circuits.” 38th International Symposium on Multiple Valued Logic (ismvl 2008). IEEE,
2008.
[16] K. Matsumoto and K. Amano, “Representation of quantum circuits with clifford and π/8
gates,” arXiv preprint arXiv:0806.388834, 2008.
[17] Gushu Li, Yufei Ding, and Yuan Xie. 2019. “Tackling the Qubit Mapping Problem for
NISQ-Era Quantum Devices.” In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS ’19). Association for Computing Machinery, New York, NY, USA, 1001–1014.
https://doi.org/10.1145/3297858.3304023
[18] X. Zhou, S. Li and Y. Feng, “Quantum Circuit Transformation Based on Simulated
Annealing and Heuristic Search” in IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 39, no. 12, pp. 4683-4694, Dec. 2020, doi:
10.1109/TCAD.2020.2969647.
[19] Shin Nishio, Yulu Pan, Takahiko Satoh, Hideharu Amano, and Rodney Van Meter.
2020. “Extracting Success from IBM’s 20-Qubit Machines Using Error-Aware Compilation.” J. Emerg. Technol. Comput. Syst. 16, 3, Article 32 (July 2020), 25 pages.
https://doi.org/10.1145/3386162
[20] IBMQ, “IBM Quantum Platform,” https://quantum.ibm.com/
[21] IBM Qiskit, “IBM Qiskit,” https://www.ibm.com/quantum/qiskit