研究生: |
彭泓凱 Peng, Hung-Kai |
---|---|
論文名稱: |
利用寬頻兆赫波光譜儀研究實用透明導電薄膜的光電特性 The studies of functional transparent conductive oxide thin films by broadband terahertz spectroscopy |
指導教授: | 潘犀靈 |
口試委員: |
趙如蘋
黃衍介 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 兆赫波時析光譜儀 、透明導電薄膜 |
外文關鍵詞: | Terahertz time-domain spectroscopy, Transparent conductive oxide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
透明導電薄膜同時具有高光學穿透率與高導電率這兩種優異的特性,因此被廣泛應用於各種光電元件,如太陽能電池、液晶顯示器和發光二極體等。本論文利用光導天線與雷射光激發電漿之兆赫波時域光譜儀研究透明導電氧化物薄膜(氧化銦錫、摻鋁氧化鋅與摻鋁鐿氧化鋅)在不同薄膜厚度下於兆赫波段的光學常數與導電率。
這三類透明導電薄膜在0.1-2.4THz波段的光學與電性參數經由整合光導天線與雷射光激發電漿兆赫波時域光譜儀量測結果分析而得。結合傅立葉轉換紅外線光譜量測,我們可得到這些薄膜的廣域穿透率(0.1-15THz)。舉例而言,100奈米厚的氧化銦錫、摻鋁氧化鋅與摻鋁鐿氧化鋅薄膜在兆赫波段的穿透率分別約為21%、41%和28%。由這些材料的複數折射率計算得到的寬頻的複數導電率可以Drude-Smith模型擬合之,進而得到其電性參數如直流遷移率、載子濃度與直流導電率。經由分析,氧化銦錫薄膜的直流遷移率與導電率分別為96-120cm2V-1s-1和1.18-1.65×103Ω-1cm-1;摻鋁氧化鋅薄膜者為7-84 cm2V-1s-1和0.41-1.06×103Ω-1cm-1;摻鋁鐿氧化鋅薄膜者為26-85 cm2V-1s-1和0.91-1.12×103Ω-1cm-1。我們也用X光繞射分析這些樣品,當薄膜中晶粒越大時遷移率隨之變大,但當其載子濃度較高時,遷移率受摻雜離子間的平均自由路徑較小的影響而變低。結晶性會隨薄膜厚度增加而變佳,300nm厚之氧化銦錫薄膜更由非晶相轉為多晶相。本論文的實驗結果指出所研究之摻鋁氧化鋅薄膜與摻鋁鐿氧化鋅薄膜的電性參數略差於氧化銦錫薄膜但兆赫波段的穿透率較好。這三種薄膜的電性參數的差距可由晶粒大小、結晶相與載子濃度討論之。
The transparent conductive oxides (TCOs, indium-tin oxide (ITO), aluminum-doped zinc oxide (AZO), aluminum and ytterbium-doped zinc oxide (AYZO)) thin films which exhibit outstanding properties such as high transparency in the visible region and good electrical conductivity are measured by terahertz time-domain spectroscopy (THz-TDS) based on photoconductive (PC) antenna and laser-induced air-plasma. The optical and electrical properties of these TCO thin films in the THz frequency range (0.1-2.4THz) are obtained. Broadband optical and electrical characteristics can be determined by combing the results from THz-TDS based on PC antenna and laser-induced air-plasma, respectively. The frequency-dependent complex refractive indices have been extracted from the TDS measurements. Complex conductivities of the TCO samples can then be determined. Together with Fourier transform infrared spectroscopic (FTIR) measurements, we’ve found that the THz and far-infrared transmittance of 100 nm-thick ITO, AZO, and AYZO thin films are ~21%, ~48%, and ~28%, respectively. By fitting complex conductivities of the TCOs with the Drude-Smith model, electrical properties such as DC mobility (μ), carrier concentration (Ne), and DC conductivity (σDC) are obtained. Here, μ and σDC for ITO thin films are 96-120cm2V-1s-1 and 1.18-1.65 ×103Ω-1cm-1, respectively. For AZO and AYZO thin films, these parameters are 7-84 cm2V-1s-1 and 0.41-1.06×103Ω-1cm-1 versus 26-85 cm2V-1s-1 and 0.91-1.12×103Ω-1cm-1, respectively. We have also examined structural and crystalline properties of samples by X-ray diffraction (XRD) measurements. From the XRD information, it can be concluded that motilities can be enhanced as increasing grain size, but reduced with overly high carrier concentration because of the smaller distance between impurity ions.
[1] Jefferson Lab, Terahertz radiation frequency range (2003) (http://wwwold.jlab.org/news/releases/2003/03felthz.html)
[2] Jared H. Strait, Paul A. George, Mark Levendorf, Martin Blood-Forsythe, Farhan Rana, and Jiwoong Park, “Measurements of the Carrier Dynamics and Terahertz Response of Oriented Germanium Nanowires using Optical-Pump Terahertz-Probe Spectroscopy,” Nano Lett., Vol. 9, No. 8, pp. 2967-2972, June 2009.
[3] Katsuhiro Ajito and Yuko Ueno, “THz Chemical Imaging for Biological Applications,” IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 1, pp. 293-300, September 2011
[4] B. B. Hu and M. C. Nuss, W E. Sleat, and W Sibbett, “Imaging with terahertz waves,” Opt. Lett., Vol. 20, No. 16, pp. 1716-1718, August 1995.
[5] A.G. Marklz, A. Roitberg and E.J. Heilweil,”Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0THz” Chemical physics letters Vol.320 pp.42-48, 2000.
[6] R. Piesiewicz, T. Kleine-Ostmann, N.Krumbholz, D. Mittleman, M. Koch, J. Schoebel, and T. Kürner,”Short-range ultra-broadband terahertz communications: concepts and perspectives” IEEE antennas and propagation magazine Vol.49 No.6 pp.24-39, December 2007.
[7] D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett., Vol. 45, No. 3, pp. 284-286, May 1984.
[8] A. Rice, Y. Jin, X. F. Ma, X.C. Zhang, D. Bliss et al., “Terahertz optical rectification from 110 zincblende crystals,” Appl. Phys. Lett., Vol. 64, No. 11, pp. 1324-1326, March 1994.
[9] X.C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond electromagnetic pulses from semiconductor surfaces,” Appl. Phys. Lett., Vol. 56, No. 11, pp. 1011-1013, March 1990.
[10] Rüdeger Köhler et al, “Terahertz semiconductor heterostructure laser,” NATURE, Vol. 417, No. 6885, pp. 156-159, May 2002.
[11] Q. Wu and X.C. Zhang, “Free-space electro-optic sampling of terahertz beams,” Appl. Phys. Lett., Vol. 67, No. 24, pp. 3523-3525, December 1995.
[12] D. E. Spence, J. M. Evans, W E. Sleat, and W Sibbett, “Regeneratively initiated self-mode-locked Ti:sapphire laser,” Opt. Lett., Vol. 16, No. 22, pp. 1762-1764, November 1991.
[13] G. P. Wiliiams, “High-power terahertz synchrotron sources”, Phil. Trans. R. Soc. A Vol.362, pp.403-414, 2004.
[14] B. N. Murdin, ”Far-infrared free-electron lasers and their applications” Contemp. Phys. Vol.50, No.2, pp.391-406, 2009
[15] G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, ”THz and sub-THz quantum cascade lasers”, Laser and photonics reviews Vol.3 No.1-2 pp.45-46 , 2009.
[16] D. Frischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, ”far-infrared time domain spectroscopy with terahertz beams of dielectrics and semiconductors” J. Opt. Soc. Am. B Vol.7 No.10, pp.2006-2015, 1990.
[17] C.-S. Yang, C.-H. Chang, M.-H. Lin, P. Yu, O. Wada, and C.-L. Pan, “THz conductivities of indium-tin-oxide nanowhiskers as graded-refractive-index structure,” Opt. Express, vol. 20, no. S4, pp. A441-A451 (2012)
[18] S. Sohn and Y. S. Han, “Transparent Conductive Oxide (TCO) Films for Organic Light Emissive Devices (OLEDs), Organic Light Emitting Diode – Material, Process and Devices”, Ch.9, Prof. Seung Hwan Ko (Ed.), Intech, Shanghai, 2011.
[19] R. G. Gordon,”Criteria for choosing transparent conductors” MRS Bull Vol.25 pp.52-57, 2000.
[20] J. Hu and R. G. Gordon,”Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition” J. Appl. Phys. Vol.71 pp.880-890, 1992.
[21] Y. Igasaki and H. Saito,”the effects of deposition rate on the structural and electrical properties of ZnO:Al films deposited on (1120) oriented sapphire substrates” J. Appl. Phys. Vol.70 pp.3613,1991.
[22] A.F. Aktaruzzaman, G. L. Sharma, and L. L. Malhotra,”Eletrical, optical and annealing characteristics of ZnO:Al films prepared by spray pyrolysis” Thin Solid Films Vol.198 pp.67-74, 1991.
[23] W. Tang, and D. C. Cameron,”Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process” Thin solid films, Vol.238 pp.83-87, 1994.
[24] H. Kim, A. Piqué, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore, and D.B. Chrisey,”Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices” Thin solid films Vol.377-378 pp.798-802, 2000.
[25] D.R. Sahu, S.Y. Lin, and J.L. Huang,”Improved properties of Al-doped ZnO film by electron beam evaporation technique” Microelectronics Journal Vol.38 pp.245-250, 2007.
[26] R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi,”Tin doped indium oxide thin films: electrical properties” Journal of Applied physics Vol.83 No.5 pp.2631-2645, 1997.
[27] V. Srikant, and D.R. Clarke,”On the optical band gap of zinc oxide” J. Appl. Phys. Vol.83 pp.5447-5451, 1998.
[28] K. Ellmer, A. Klein, and B. Rech,”Transparent Conductive Zinc Oxide”,Springer, New York, 2008.
[29] T. Minami, H. Sato, H. Nanto, and S.Takata,”Heat treatment in hydrogen gas and plasma for trandparent conducting oxide films such as ZnO, SnO2 and indium tin oxide” Thin solid film Vol.176 pp.277-282, 1989.
[30] F.J. Pern, R. Noufi, B. To, C. DeHeart, X.Li, and S. H. Glick,”Degration of ZnO-based window layers for thin-film CIGS by accelerated stress exposures” Proc. Of SPIE Vol.7048, pp. 70480P1-14,2008.
[31] Wikipedia, Sputter deposition (http://en.wikipedia.org/wiki/Sputter_deposition)
[32] Laboratory for Laser Energetics of the University of Rochester, Chirp pulse amplification, (http://www.lle.rochester.edu/around_the_lab/?month=10&year=2010)
[33] A. Mayer and F. Keilmann, “Far-infrared nonlinear optics: I. χ(2) near ionic resonance,” Phys. Rev. B, Vol. 33, No. 10, pp. 6954-6961, MAY 1986.
[34] T. Dekorsy, V. A. Yakovlev, W. Seidel, M. Helm, and F. Keilmann, “Infrared-Phonon–Polariton Resonance of the Nonlinear Susceptibility in GaAs,” Phys. Rev. Lett., Vol. 90, No. 5, pp. 6954-6961, February 2003.
[35] J.R. Morris, Y.R. Shen, “Far-infrared generation by picosecond pulses in electro-optical materials,” Optics Communications, Vol. 3, Issue 2, pp. 81-84, April 1971.
[36] D. H. Auston and P. R. Smith, “Generation and detection of millimeter waves by picosecond photoconductivity,” Appl. Phys. Lett., Vol. 43, No. 7, pp. 631-633, October 1983.
[37] Ch. Fattinger and D. Grischkowsky, “Terahertz beams,” Appl. Phys. Lett., Vol. 54, No.6 pp.490-492, February 1989.
[38] D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media,” Phys. Rev. Lett., Vol. 53, No. 16, pp. 1555-1558, October 1984.
[39] T. Löffler, M. Kress, M. Thomson, T. Hahn, N. Hasegawa, and H. G. Roskos, “Comparative performance of terahertz emitters in amplifier-laser-based systems,” Semicond. Sci. Technol., Vol. 20, pp. S134-S141, June 2005.
[40] H. Hamster, A. Sullivan, S. Gordon, W. White, and R. W. Falcone, “Subpicosecond, Electromagnetic Pulses from Intense Laser-Plasma Interaction,” Phys. Rev. Lett., Vol. 71, No. 17, pp. 2725- 2728, October 1993.
[41] H. Hamster, A. Sullivan, S. Gordon, and R. W. Falcone, “Short-pulse terahertz radiation from high-intensity-laser-produced plasmas,” Phys. Rev. E, Vol. 49, No. 17, pp. 671-677, January 1994.
[42] Mark D. Thomson, Markus Kreß, Torsten Löffler, and Hartmut G. Rosk, “Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications,” Laser & Photon. Rev., Vol. 1, No. 4, pp. 349-368, November 2007.
[43] T. Löffler, F. Jacob, and H. G. Roskos, “Generation of terahertz pulses by photoionization of electrically biased air,” Appl. Phys. Lett., Vol. 77, No. 3, pp. 453-455, July 2000.
[44] T. Löffler and H. G. Roskos, “Gas-pressure dependence of terahertz-pulse generation in a laser generated nitrogen plasma,” J. Appl. Phys., Vol. 91, No. 5, pp. 2611-2614, March 2002.
[45] D. J. Cook and R. M. Hochstrasser, “Intense terahertz pulses by four-wave rectification in air,” Opt. Lett., Vol. 25, No. 16, pp. 1210-1212, August 2000.
[46] K. Y. Kim, J. H. Glownia, A. J. Taylor and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express, Vol. 15, No. 8, pp. 4577- 4584, April 2007.
[47] K. Y. KIM, A. J. TAYLOR, J. H. GLOWNIA AND G. RODRIGUEZ, “Coherent control of terahertz supercontinuum generation in ultrafast laser–gas interactions,” nature photonics, Vol. 2, pp. 605-609, October 2008.
[48] Ki-Yong Kim, “Generation of coherent terahertz radiation in ultrafast laser-gas interactions,” Phys. Plasmas, Vol. 16, pp. 056706 1-8, May 2009.
[49] I. Babushkin, W. Kuehn, C. Ko¨hler, S. Skupin, L. Bergé, K. Reimann, M.Woerner, J. Herrmann, and T. Elsaesser, “Ultrafast Spatiotemporal Dynamics of Terahertz Generation by Ionizing Two-Color Femtosecond Pulses in Gases,” Phys. Rev. Lett., Vol. 105, pp. 053903, July 2010.
[50] Yasuo Minami, Makoto Nakajima, and Tohru Suemoto, “Effect of preformed plasma on terahertz-wave emission from the plasma generated by two-color laser pulses,” Phys. Rev. A, Vol. 83, pp. 023828, 1990.
[51] Markus Kress, Torsten Löffler, Susanne Eden, Mark Thomson, and Hartmut G. Roskosr, “Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves,” Opt. Lett., Vol. 29, No. 10, pp. 1120-1122, November, 2004.
[52] T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett., Vol. 30, No. 20, pp. 2805-2807, October 2005.
[53] Xu Xie, Jianming Dai, and X.-C. Zhang, “Coherent Control of THz Wave Generation in Ambient Air,” Phys. Rev. Lett., Vol. 96, pp. 075005, February 2006.
[54] Klaus Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys., Vol. 70, pp. 1597-1632, September 2007.
[55] Jianming Dai, Nicholas Karpowicz, and X.-C. Zhang, “Coherent Polarization Control of TerahertzWaves Generated from Two-Color Laser-Induced Gas Plasma,” Phys. Rev. Lett., Vol. 103, pp. 023001, July 2009.
[56] Yun-Shik Lee, “Principles of terahertz science and technology,” Chapter3, springer, 2009.
[57] C.M. Chang, (2012). The studies of indium-tin-oxide nanostructures by broadband terahertz spectroscopy. Master dissertation, National Tsing Hua University, Hsinchu.
[58] Ching-Wei Chen, Yen-Cheng Lin, Chia-Hua Chang, Peichen Yu, Jia-Min Shieh, and Ci-Ling Pan, “Frequency-Dependent Complex Conductivities and Dielectric Responses of Indium Tin Oxide Thin Films from the Visible to the Far-Infrared,” IEEE Journal of Quantum Electronics, Vol. 46, No. 12, pp. 1746-1754, December 2010.
[59] M. van Exter and D. Grischkowsky, “Carrier dynamics of electrons and holes in moderately doped silicon,” Phys. Rev. B, Vol. 41, No. 17, pp. 12140-12149, 1990.
[60] S. Nashima, O. Morikawa, K. Takata, and M. Hangyo, “Measurement of optical properties of highly doped silicon by terahertz time domain reflection spectroscopy,” Appl. Phys. Lett., Vol. 79, No. 24, pp. 3923-3925, December 2001.
[61] Martin Dressel and Marc Scheffler, “Verifying the Drude response,” Ann. Phys. (Leipzig), Vol. 15, No. 7-8, pp. 535-544, May 2006.
[62] N. V. Smith, “Classical generalization of the Drude formula for the optical conductivity,” Phys. Rev. B, Vol. 64, pp. 155106, 2001.
[63] Ronald Ulbricht, Euan Hendry, Jie Shan, Tony F. Hein, Mischa Bonn, “Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy,” Reviews of Modern Physics, Vol. 83, pp. 543-586, June 2011.
[64] Wikipedia, Bragg diffraction ( http://en.wikipedia.org/wiki/File:Bragg_diffraction_2.svg)
[65] H.-Ch. Weissker, J. Furthmu¨ller, and F. Bechstedt, “Validity of effective-medium theory for optical properties of embedded nanocrystallites from ab initio supercell calculations,” Phys. Rev. B, Vol. 67, pp. 165322, 2003.
[66] D. G. Cooke, A. N. MacDonald, A. Hryciw, J. Wang, Q. Li, A. Meldrum, and F. A. Hegmann, “Transient terahertz conductivity in photoexcited silicon nanocrystal films,” Phys. Rev. B, Vol. 73, pp. 193311, May 2006.
[67] Matthew C. Beard, Gordon M. Turner, James E. Murphy, Olga I. Micic, Mark C. Hanna, Arthur J. Nozik, and Charles A. Schmuttenmaer, “Electronic Coupling in InP Nanoparticle Arrays,” Nano Lett., Vol. 3, No. 12, pp. 1695-1699, October 2003.
[68] SA Howard, and KD Preston, “Profile Fitting of Powder Diffraction Patterns,” Reviews in Mineralogy vol. 20: Modern Powder Diffraction, Mineralogical Society of America pp.217-275, Washington DC, 1989
[69] A. L. Patterson, “The Scherrer formula for X-ray particle size determination” Physical Review Vol.56 pp.978-982, 1939.
[70] Jinsu Yoo, Jeonghul Lee, Seokki Kim, Kyunghoon Yoon, I. Jun Park, S.K. Dhungel, B. Karunagaran, D. Mangalaraj, and Junsin Yi, “High transmittance and low resistive ZnO:Al films for thin film solar cells” Thin Solid Films, 480-481 pp. 231-217, 2005.
[71] Jae Seok An, Jin Koog Shin, Jong Ho Lee, and Bum Ho Choi,“Preparation of Naturally textured aluminum-doped zinc oxide films on flexible poly(ether sulfone) substrate by radio frequency magnetron sputtering” Japanese Journal of Applied Physics Vol.52 pp.031101, 2013.
[72] A. Pokaipisit, M. Horprathum and P. Limsuwan,”Effect of films thickness on the properties of ITO thin films prepared by electron beam evaporation” Nat. Sci. Vol.41No.5 pp.255-261, 2007.
[73] C. Agashe, O.Kluth, J. Hüpkes, U. Zastrow ,B. Rech and M. Wuttig,”Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films” Journal of Applies Physics, Vol.95 No.4 pp.1911-1917, 2004.
[74] J. Ederth, “Electrical transport in nanoparticle thin films of gold and indium tin oxide” Ph.D. dissertation, Dept. Mat. Science, Uppsala Univ., Uppsala, Sweden, 2003.
[75] M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer,” Transient photoconductivity in GaAs as measured by time-resolved terahertz spectroscopy” Phys. Rev. B Vol.62 No.23, pp.15764-15777, 2000.
[76] M. Schall, and P. Uhd Jepsen,”above-band gap two-photon absorption and its influence on ultrafast carrier dynamics in ZnTe and CdTe” Appl. Phys. Let. Vol.80 No.26 pp.4771-4773, 2002.
[77] F. A. Hegmann, O. Ostroverkhova, and F. G. Cooke, “Photophysics of molecular materials: from single molecules to single crystals”, Ch.7, Wiley, 2006.
[78] D. Tsokkou, A. Othonos, and M. Zervos,”Carrier dynamics and conductivity of SnO2 nanowires investigated by time-resolved terahertz spectroscopy” Appl. Phys. Lett. Vol.100 pp.133101, 2012.
[79] Jianming Dai, Jingle Liu, and Xi-Cheng Zhang, “Terahertz Wave Air Photonics: Terahertz Wave Generation and Detection With Laser-Induced Gas Plasma,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 17, No. 1, pp. 183-190, January 2011.