簡易檢索 / 詳目顯示

研究生: 高嘉宏
Kao,Chia-Hung
論文名稱: 以非局域性耦合 Nagumo 模型探討植被生長形式的變化
Investigation of Vegetation Competition Using the Non-local Coupled Nagumo Model
指導教授: 吳國安
Wu,Kuo-An
口試委員: 陳培亮
Chen,PeiLong
陳俊仲
Chen,Chun-Chung
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 42
中文關鍵詞: 圖案形成植披競爭阿利效應Nagumo模型非局域性競爭
外文關鍵詞: Nagumo model, Pattern formation, Vegetation competition, Allee effect, Non-local competition
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植披之圖案形成已經藉由非局域Nagumo 模型研究,例如出現在南非與納米
    比亞乾旱草原地帶的自然景觀” 仙女圈”, 而以往非局域Nagumo 模型皆是單物
    種模型,但在自然界中植披是包含多種的植物,因此吾人將非局域Nagumo 模
    型擴展至非局域耦合Nagumo 模型,以此模型研究多物種植披間的競爭行為,
    並藉由線性穩定性分析,吾人觀察到若核函數是截止函數形式,隨著非局域性
    競爭長度經過相變點將會發生相變現象,偏好的生長型態將會改變,在長度尺
    度上也出現不連續的變化。


    Vegetation pattern formation has been successfully described by the non-local
    Nagumo model in the past decade. For example, it can be used to explain the
    vegetation formation named ”fairy circles” that are observed in vast territories in
    southern Angola, Namibia and South Africa. The non-local Nagumo model has
    been investigated thoroughly in the past and it exhibits various solutions including
    kink/anti-anik, traveling wave and patterns. Since the vegetation of multiple
    species is commonly observed in the realistic ecosystems, therefore, we employ the
    non-local coupled Nagumo model for multiple species that considers the vegetation
    competition between two plant species with different non-local competition
    range. We investigate the non-local coupled Nagumo model using a linear stability
    analysis and we find the growth patterns changes rapidly as the non-local
    range exceeds a critical value. This mode transition phenomenon is investigated
    extensively to determine how the mode transition point varies with the coupling
    strength. In addition, we discuss how the kernal function affect the mode transition
    phenomenon.

    1 Introduction 1 2 Model 5 2.1 The Fisher-KPP equation . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The Nagumo model . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 The non-local Nagumo model . . . . . . . . . . . . . . . . . . . . . 6 2.4 The non-local coupled Nagumo model . . . . . . . . . . . . . . . . 7 3 The linear stability analysis 12 3.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Identical nonlocal range . . . . . . . . . . . . . . . . . . . . . . . . 14 4 Pattern formation in non-local Nagumo model 17 4.1 The mode transition phenomenon . . . . . . . . . . . . . . . . . . . 17 4.2 Influence of non-local function on mode transition . . . . . . . . . . 24 5 The Gaussian approximation method 29 6 Conclusion

    [1] R. A. Fisher. The wave of advance of advantageous genes. Annals of Eugenics,
    7:355–369, 1937.
    [2] V. M. Kenkre. Results from variants of the fisher equation in the study of
    epidemics and bacteria. Physica a-Statistical Mechanics and Its Applications,
    342(1-2):242–248, 2004.
    [3] D. J. P. da Silva and R. A. Kraenkel. Population persistence in weaklycoupled
    sinks. Physica a-Statistical Mechanics and Its Applications, 391(1-2):
    142–146, 2012.
    [4] V. M. Kenkre and N. Kumar. Nonlinearity in bacterial population dynamics:
    Proposal for experiments for the observation of abrupt transitions in patches.
    Proceedings of the National Academy of Sciences of the United States of
    America, 105(48):18752–18757, 2008.
    [5] V. M. Kenkre and M. N. Kuperman. Applicability of the fisher equation to
    bacterial population dynamics. Physical Review E, 67(5), 2003.
    [6] N. Perry. Experimental validation of a critical domain size in reactiondiffusion
    systems with escherichia coli populations. Journal of the Royal
    Society Interface, 2(4):379–387, 2005.
    [7] V. Mendez and D. Campos. Population extinction and survival in a hostile
    environment. Physical Review E, 77(2), 2008.
    [8] G. Abramson and V. M. Kenkre. Spatiotemporal patterns in the hantavirus
    infection. Physical Review E, 66(1), 2002.
    [9] N. Kumar, M. N. Kuperman, and V. M. Kenkre. Theory of possible effects
    of the allee phenomenon on the population of an epidemic reservoir. Physical
    Review E, 79(4), 2009.
    [10] V. M. Kenkre. Statistical mechanical considerations in the theory of the
    spread of the hantavirus. Physica a-Statistical Mechanics and Its Applications,
    356(1):121–126, 2005.
    [11] N. Kumar, R. R. Parmenter, and V. M. Kenkre. Extinction of refugia of hantavirus
    infection in a spatially heterogeneous environment. Physical Review
    E, 82(1), 2010.
    [12] O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen. Collapse arrest and
    soliton stabilization in nonlocal nonlinear media. Physical Review E, 66(4).
    [13] L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila,
    I. Veretennicoff, and J. Danckaert. Impact of nonlocal interactions in dissipative
    systems: Towards minimal-sized localized structures. Physical Review
    A, 75(6).
    [14] Y. J. He, B. A. Malomed, D. Mihalache, and H. Z. Wang. Spinning bearingshaped
    solitons in strongly nonlocal nonlinear media. Physical Review A,
    77(4).
    [15] Y. V. Kartashov, L. Torner, V. A. Vysloukh, and D. Mihalache. Multipole
    vector solitons in nonlocal nonlinear media. Optics Letters, 31(10):1483–1485.
    [16] W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller. Modulational
    instability in nonlocal nonlinear kerr media. Physical Review E, 64(1).
    [17] W. Krolikowski, B. Luther-Davies, and O. Bang. Optical spatial solitons in
    nonlocal nonlinear medium. Nonlinear Optics: Materials, Fundamentals, and
    Applications, 46:209–211.
    [18] D. Mihalache, D. Mazilu, F. Lederer, L. C. Crasovan, Y. V. Kartashov,
    L. Torner, and B. A. Malomed. Stable solitons of even and odd parities
    supported by competing nonlocal nonlinearities. Physical Review E, 74(6).
    [19] C. Lopez and E. Hernandez-Garcia. Fluctuations impact on a patternforming
    model of population dynamics with non-local interactions. Physica
    D-Nonlinear Phenomena, 199(1-2):223–234.
    [20] Y. Kuramoto, D. Battogtokh, and H. Nakao. Multiaffine chemical turbulence.
    Physical Review Letters, 81(16):3543–3546.
    [21] S. Shima and Y. Kuramoto. Rotating spiral waves with phase-randomized
    core in nonlocally coupled oscillators. Physical Review E, 69(3).
    [22] H. Riecke. Self-trapping of traveling-wave pulses in binary mixture convection.
    Physical Review Letters, 68(3):301–304.
    [23] H. Riecke and G. D. Granzow. Localization of waves without bistability:
    Worms in nematic electroconvection. Physical Review Letters, 81(2):333–336.
    [24] P. B. Umbanhowar, F. Melo, and H. L. Swinney. Localized excitations in a
    vertically vibrated granular layer. Nature, 382(6594):793–796.
    [25] B. A. Malomed and A. A. Nepomnyashchy. Kinks and solitons in the generalized
    ginzburg-landau equation. Physical Review A, 42(10):6009–6014.
    [26] P. Kolodner, D. Bensimon, and C. M. Surko. Traveling-wave convection in
    an annulus. Physical Review Letters, 60(17):1723–1726.
    [27] M. Dennin, G. Ahlers, and D. S. Cannell. Spatiotemporal chaos in electroconvection.
    Science, 272(5260):388–390.
    [28] W. Barten, M. Lucke, and M. Kamps. Localized traveling-wave convection
    in binary-fluid mixtures. Physical Review Letters, 66(20):2621–2624.
    [29] C. Crawford and H. Riecke. Oscillon-type structures and their interaction in
    a swift-hohenberg model. Physica D-Nonlinear Phenomena, 129(1-2):83–92.
    [30] T. E. Woolley, R. E. Baker, E. A. Gaffney, and P. K. Maini. Stochastic
    reaction and diffusion on growing domains: Understanding the breakdown of
    robust pattern formation. Physical Review E, 84(4).
    [31] R. F. Costantino, R. A. Desharnais, J. M. Cushing, and B. Dennis. Chaotic
    dynamics in an insect population. Science, 275(5298):389–391.
    [32] M. G. Clerc, D. Escaff, and V. M. Kenkre. Patterns and localized structures
    in population dynamics. Physical Review E, 72(5), 2005.
    [33] M. G. Clerc, D. Escaff, and V. M. Kenkre. Analytical studies of fronts,
    colonies, and patterns: Combination of the allee effect and nonlocal competition
    interactions. Physical Review E, 82(3), 2010.
    [34] M. A. Fuentes, M. N. Kuperman, and V. M. Kenkre. Analytical considerations
    in the study of spatial patterns arising from nonlocal interaction effects.
    Journal of Physical Chemistry B, 108(29):10505–10508, 2004.
    [35] M. A. Fuentes, M. N. Kuperman, and V. M. Kenkre. Nonlocal interaction
    effects on pattern formation in population dynamics. Physical Review Letters,
    91(15), 2003.
    [36] E. H. Colombo and C. Anteneodo. Nonlinear diffusion effects on biological
    population spatial patterns. Physical Review E, 86(3), 2012.
    [37] L. A. da Silva, E. H. Colombo, and C. Anteneodo. Effect of environment
    fluctuations on pattern formation of single species. Physical Review E, 90(1),
    2014.
    [38] E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak, and E. Meron.
    Ecosystem engineers: From pattern formation to habitat creation. Physical
    Review Letters, 93(9), 2004.
    [39] R. Lefever, N. Barbier, P. Couteron, and O. Lejeune. Deeply gapped vegetation
    patterns: On crown/root allometry, criticality and desertification.
    Journal of Theoretical Biology, 261(2):194–209, 2009.
    [40] D. Escaff, C. Fernandez-Oto, M. G. Clerc, and M. Tlidi. Localized vegetation
    patterns, fairy circles, and localized patches in arid landscapes. Physical
    Review E, 91(2), 2015.
    [41] F. Borgogno, P. D’Odorico, F. Laio, and L. Ridolfi. Mathematical models of
    vegetation pattern formation in ecohydrology. Reviews of Geophysics, 47.
    [42] O. Lejeune, M. Tlidi, and P. Couteron. Localized vegetation patches: A
    self-organized response to resource scarcity. Physical Review E, 66(1).
    [43] E. Meron, E. Gilad, J. von Hardenberg, M. Shachak, and Y. Zarmi. Vegetation
    patterns along a rainfall gradient. Chaos Solitons Fractals, 19(2):367–
    376.
    [44] M. Rietkerk, S. C. Dekker, P. C. de Ruiter, and J. van de Koppel.
    Self-organized patchiness and catastrophic shifts in ecosystems. Science,
    305(5692):1926–1929.
    [45] C. Fernandez-Oto, M. G. Clerc, D. Escaff, and M. Tlidi. Strong nonlocal
    coupling stabilizes localized structures: An analysis based on front dynamics.
    Physical Review Letters, 110(17).
    [46] J. Siebert, S. Alonso, M. Bar, and E. Scholl. Dynamics of reaction-diffusion
    patterns controlled by asymmetric nonlocal coupling as a limiting case of
    differential advection. Physical Review E, 89(5), 2014.
    [47] M. J. Grimson and G. C. Barker. Continuum model for the spatiotemporal
    growth of bacterial colonies. Physical Review E, 49(2):1680–1684, 1994.
    [48] S. Kitsunezaki. Interface dynamics for bacterial colony formation. Journal of
    the Physical Society of Japan, 66(5):1544–1550, 1997.
    [49] J. Wakita, K. Komatsu, A. Nakahara, T. Matsuyama, and M. Matsushita.
    Experimental investigation on the validity of population-dynamics approach
    to bacterial colony formation. Journal of the Physical Society of Japan, 63(3):1205–1211, 1994.
    [50] F. Courchamp, T. Clutton-Brock, and B. Grenfell. Inverse density dependence
    and the allee effect. Trends in Ecology Evolution, 14(10):405–410,1999.
    [51] M. J. Groom. Allee effects limit population viability of an annual plant.
    American Naturalist, 151(6):487–496.1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE