簡易檢索 / 詳目顯示

研究生: 魏喬俐
Chiao-Li Wei
論文名稱: 微波輔助酸化奈米碳管之製備鑑定及其在環境分析之應用
Microwave-assisted preparation and characterization of acidified carbon nanotubes targeted for applications in environmental analysis
指導教授: 凌永健
Yong-Chien Ling
黃賢達
Shang-Da Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 72
中文關鍵詞: 奈米碳管微波輔助綠色化學磁性奈米粒子氣體吸附重金屬
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米材料具有獨特性質,如奈米尺寸、高比表面積、超順磁等。已被許多不同領域廣泛應用。奈米碳管為其中最熱門材料之一,各領域皆嘗試開發奈米碳管獨特之功能使其應用效能最佳。在製作奈米碳管應用材料中,修飾與官能化奈米碳管表面即為相當重要之步驟,最常見官能化為酸化奈米碳管使得羧酸基存在於奈米碳管表面,得以進行後續之反應。因此酸化後之碳管,其羧酸基之數量與分佈,酸化後之結構變化,皆會影響在分析上之應用結果。本研究即探討影響酸化奈米碳管之參數,對於羧酸基數量、分佈之影響,與在環境分析應用的潛力。
    微波輔助方法,被視為符合綠色化學方法之一。以微波輔助酸化方法,酸化不同之奈米碳管,微波系統可穩定控制酸化時間與溫度,與傳統酸化方法相比,除節省反應時間,也可得到酸化程度穩定且舉有再現性之奈米碳管。本研究探討以改變微波輔助酸化反應參數,如溫度、時間,對奈米碳管酸化程度之影響。其中以反向滴定估算羧酸基在碳管表面之數量,拉曼光譜分析與掃描式電子顯微鏡比較酸化碳管前後結構之改變,再以磁性奈米粒子與碳管上之羧酸基結合,以穿透式電子顯微鏡評估羧酸基在奈米碳管上之分佈位置,進而探討微波輔助酸化參數與酸化程度之關係。奈米碳管之酸化程度與後續應用效率息息相關,因此以吸附氣體與溶液中重金屬離子做比較,證實不同應用所需酸化奈米碳管程度也不同。


    Nanomaterials have been utilized extensively in different fields based on their excellent optical properties, magnetic properties, and high surface area per unit volume etc. Carbon nanotubes (CNTs) are one of popular nanomaterials and have been applied to many research fields in recent years. Modifying or decorating the surface of CNTs with desired functional groups is an important step for preparing CNTs-based materials. The surface of CNTs acidified with carboxylic acid in advance is indispensable to benefit the followed-up reaction. The structure of CNTs after acidification, i.e., the acidified amounts and sites on the CNTs’ surface was known to affect their analytical applications, such as gas adsorption or heavy metal extraction. This motivated us to further explore the preparation parameters that affect the amounts and sites of carboxylic acid on the CNTs’ surface, which benefits subsequent analytical application.
    Microwave-assisted acidification, being regarded as green chemistry method, was employed to acidify different kinds of CNTs in this study. Various experimental parameters for microwave acidification (temperature, amounts of acid, and duration of microwave) were tested. Acid-base titration was applied to evaluate the amounts of carboxylic acid modified on to CNTs’ surface. The structure of CNTs after acidification was determined by Raman spectroscopy. Acidified sites were investigated first by acidified CNTs grafted with magnetic nanoparticles (MNPs) of transmission electron microscopy (TEM) analysis. Preliminary results of gas adsorption respective gas and heavy metal extraction would be investigated in the new future by using appropriate CNTs after optimal acidified conditions were confirmed.

    目錄 I 圖目錄 IV 表目錄 VI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 4 2.1 奈米碳管之材料特性與應用與酸化之必要性 4 2.1.1 奈米碳管之生長機制與結構 4 2.1.2 奈米碳管之特性與應用 7 2.1.3 酸化奈米碳管之特性 9 2.2 奈米碳管酸化方法 11 2.2.1 傳統酸化方法 11 2.2.2 微波輔助酸化方法 13 2.3 酸化奈米碳管之應用 16 2.3.1 環境工程與吸附技術之應用 16 2.3.2 與生物分子結合減少酵素活性之應用 18 2.3.3 製備導電薄膜之應用 18 第三章 實驗與方法 20 3.1 實驗藥品與儀器設備 20 3.1.1 實驗藥品 20 3.1.2 實驗器材 21 3.1.3 實驗儀器與設備 21 3.2 微波輔助酸化奈米碳管 22 3.2.1 微波輔助反應爐 22 3.2.2 微波輔助酸化奈米碳管實驗方法 24 3.3 羧酸基之定量與分佈 24 3.3.1 以反向滴定定量羧酸基實驗方法 24 3.3.2 以磁性奈米粒子探討羧酸基分佈 26 3.4 特性分析 27 3.4.1 傅立葉轉換紅外線光譜儀 27 3.4.2 微拉曼光譜儀 28 3.4.3 高解析場發射掃描電子顯微鏡暨能量散佈分析儀 29 3.4.4 穿透式電子顯微鏡 30 3.4.5 振動樣品磁力計 31 3.5 不同酸化程度奈米碳管之應用 31 3.5.1 磁性奈米碳管氣體吸附劑 31 3.5.2 螯合溶液中重金屬離子 34 第四章 結果與討論 36 4.1 特性分析 36 4.1.1 拉曼光譜分析 36 4.1.2 穿透式電子顯微鏡分析 37 4.2 微波消化條件之探討 39 4.2.1 酸化溫度 39 4.2.2 酸化時間 51 4.2.3 酸化分佈評估 56 4.3 酸化奈米ㄋ碳管在環境分析上之應用 62 4.3.1 磁性奈米碳管氣體吸附劑 62 4.3.2 螯合重金屬離子之應用 66 第五章 結論與建議 67 參考文獻 68

    1. Tsukahara, Y.; Yamauchi, T.; Kawamoto, T.; Wada, Y., Functionalization of multi-walled carbon nanotubes realized by microwave-driven chemistry inducing dispersibility in liquid media. Bulletin of the Chemical Society of Japan 2008, 81, (3), 387-392.
    2. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature 1991, 354, (6348), 56-58.
    3. Sinnott, S. B.; Andrews, R.; Qian, D.; Rao, A. M.; Mao, Z.; Dickey, E. C.; Derbyshire, F., Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letters 1999, 315, (1-2), 25-30.
    4. Fan, Y. W.; Burghard, M.; Kern, K., Chemical defect decoration of carbon nanotubes. Advanced Materials 2002, 14, (2), 130-+.
    5. Krasheninnikov, A. V.; Nordlund, K., Irradiation effects in carbon nanotubes. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 2004, 216, 355-366.
    6. Ajayan, P. M.; Stephan, O.; Colliex, C.; Trauth, D., Aligned Carbon Nanotube Arrays Formed By Cutting a Polymer Resin-Nanotube Composite. Science 1994, 265, (5176), 1212-1214.
    7. Li, Y. H.; Wang, S. G.; Wei, J. Q.; Zhang, X. F.; Xu, C. L.; Luan, Z. K.; Wu, D. H.; Wei, B. Q., Lead adsorption on carbon nanotubes. Chemical Physics Letters 2002, 357, (3-4), 263-266.
    8. Wang, H. J.; Zhou, A. L.; Peng, F.; Yu, H.; Chen, L. F., Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb(II) in aqueous solution. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 2007, 466, (1-2), 201-206.
    9. Li, Y. H.; Ding, J.; Luan, Z. K.; Di, Z. C.; Zhu, Y. F.; Xu, C. L.; Wu, D. H.; Wei, B. Q., Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 2003, 41, (14), 2787-2792.
    10. Chen, C. C.; Chen, C. F.; Chen, C. M.; Chuang, F. T., Modification of multi-walled carbon nanotubes by microwave digestion method as electrocatalyst supports for direct methanol fuel cell applications. Electrochemistry Communications 2007, 9, (1), 159-163.
    11. Watts, P. C. P.; Mureau, N.; Tang, Z. N.; Miyajima, Y.; Carey, J. D.; Silva, S. R. P., The importance of oxygen-containing defects on carbon nanotubes for the detection of polar and non-polar vapours through hydrogen bond formation. Nanotechnology 2007, 18, (17).
    12. Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E., Fullerene pipes. Science 1998, 280, (5367), 1253-1256.
    13. Marshall, M. W.; Popa-Nita, S.; Shapter, J. G., Measurement of functionalised carbon nanotube carboxylic acid groups using a simple chemical process. Carbon 2006, 44, (7), 1137-1141.
    14. Lu, C. S.; Chiu, H.; Liu, C. T., Removal of zinc(II) from aqueous solution by purified carbon nanotubes: Kinetics and equilibrium studies. Industrial & Engineering Chemistry Research 2006, 45, (8), 2850-2855.
    15. Porro, S.; Musso, S.; Vinante, M.; Vanzetti, L.; Anderle, M.; Trotta, F.; Tagliaferro, A., Purification of carbon nanotubes grown by thermal CVD. Physica E-Low-Dimensional Systems & Nanostructures 2007, 37, (1-2), 58-61.
    16. Wang, Y. B.; Iqbal, Z.; Mitra, S., Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon 2005, 43, (5), 1015-1020.
    17. Wang, Y. B.; Iqbal, Z.; Mitra, S., Rapidly functionalized, water-dispersed carbon nanotubes at high concentration. Journal of the American Chemical Society 2006, 128, (1), 95-99.
    18. Keith, L. H.; Gron, L. U.; Young, J. L., Green analytical methodologies. Chemical Reviews 2007, 107, (6), 2695-2708.
    19. Anastas PT, W. J., Green Chemistry. Theory and Practice. Oxford University Press: New York: 1998.
    20. 綠色化學. http://www.epa.gov/greenchemistry/index.html
    21. Li, Y. H.; Wang, S. G.; Luan, Z. K.; Ding, J.; Xu, C. L.; Wu, D. H., Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 2003, 41, (5), 1057-1062.
    22. Tsang, S. C.; Harris, P. J. F.; Green, M. L. H., Thinning and Opening of Carbon Nanotubes by Oxidation Using Carbon-Dioxide. Nature 1993, 362, (6420), 520-522.
    23. Long, R. Q.; Yang, R. T., Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society 2001, 123, (9), 2058-2059.
    24. Peng, X. J.; Li, Y. H.; Luan, Z. K.; Di, Z. C.; Wang, H. Y.; Tian, B. H.; Jia, Z. P., Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters 2003, 376, (1-2), 154-158.
    25. Lu, C. S.; Chung, Y. L.; Chang, K. F., Adsorption of trihalomethanes from water with carbon nanotubes. Water Research 2005, 39, (6), 1183-1189.
    26. Yi, C. Q.; Fong, C. C.; Zhang, Q.; Lee, S. T.; Yang, M. S., The structure and function of ribonuclease A upon interacting with carbon nanotubes. Nanotechnology 2008, 19, (9).
    27. Schindler, A.; Brill, J.; Fruehauf, N.; Novak, J. P.; Yaniv, Z., Solution-deposited carbon nanotube layers for flexible display applications. Physica E-Low-Dimensional Systems & Nanostructures 2007, 37, (1-2), 119-123.
    28. Yu, X.; Rajamani, R.; Stelson, K. A.; Cui, T., Fabrication of carbon nanotube based transparent conductive thin films using layer-by-layer technology. Surface & Coatings Technology 2008, 202, 2002-2007.
    29. 紀柏享; 楊末雄; 孫毓璋, 微波消化之方法與應用. chemistry 1998, 56, 269-284.
    30. Hai, B.; Wu, J.; Chen, X. F.; Protasiewicz, J. D.; Scherson, D. A., Metal-ion adsorption on carboxyl-bearing self-assembled monolayers covalently bound to magnetic nanoparticles. Langmuir 2005, 21, (7), 3104-3105.
    31. Lin, C. L.; Lee, C. F.; Chiu, W. Y., Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid. Journal of Colloid and Interface Science 2005, 291, (2), 411-420.
    32. Kuznetsova, A.; Mawhinney, D. B.; Naumenko, V.; Yates, J. T.; Liu, J.; Smalley, R. E., Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports. Chemical Physics Letters 2000, 321, (3-4), 292-296.
    33. L. G. Wade; Whitman College; Walla Walla; WA, Organic Chemistry. Third Edition ed.
    34. Davis, W. M.; Erickson, C. L.; Johnston, C. T.; Delfino, J. J.; Porter, J. E., Quantitative Fourier Transform Infrared spectroscopic investigation of humic substance functional group composition. Chemosphere 1999, 38, (12), 2913-2928.
    35. Ko, F. H.; Lee, C. Y.; Ko, C. J.; Chu, T. C., Purification of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel. Carbon 2005, 43, (4), 727-733.
    36. Ritter, U.; Scharff, P.; Siegmund, C.; Dmytrenko, O. P.; Kulish, N. P.; Prylutskyy, Y. I.; Belyi, N. M.; Gubanov, V. A.; Komarova, L. I.; Lizunova, S. V.; Poroshin, V. G.; Shlapatskaya, V. V.; Bernas, H., Radiation damage to multi-walled carbon nanotubes and their Raman vibrational modes. Carbon 2006, 44, (13), 2694-2700.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE